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3.1  Introduction��3.1

The approach to this research has been influenced by the fact that graphical map-
ping is difficult to learn. To assist the learner in this endeavour, an approach for 
teaching graphical mapping amenable to computer implementation has been 
conceived. The proposed approach has three stages:

1.	 Pre-Teaching. The purpose of this stage is basically to introduce the task 
the learner is expected to accomplish as well as to gauge the learner’s pri-
or knowledge.

2.	 Practice and Tutoring. This book is mostly dedicated to this stage. Here, 
the learner practices mapping under the supervision of a computer tutor.

3.	 Post-task Feedback. This stage is concerned with analysing the learner’s 
final map and then providing feedback and advice about how to improve it.

The lack of an expert mapper makes difficult the use of protocol analysis in the 
current research. Thus, this research has striven for presenting a training approach 
which would require a minimum of mapping expertise in its development. The 
approach sketched above is described in Section 3.2. A system which implements 
the second stage of this approach, named MapTutor, has been built. Section 
3.2.4 presents an overview of the components which make up this system. This 
section also shows how these components interact to provide individualised tu-
toring. The final part of this chapter is devoted to the knowledge component of 
MapTutor.

3.2  A Computational Learning Approach��3.2

As can be apprehended, the approach described here is similar in spirit to the 
modelling approaches described in Section 2.6.2. The main difference between 
that approach and the one described here is that the former is not intended for 
one-to-one tutoring, and therefore does not provide immediate feedback, where-
as the approach presented here strives for individual, interactive tutoring wit h 
instantaneous feedback. Also, the approach discussed here requires a minimum 
of expertise from an instructional designer both in mapping and in the subject 
domain.
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3.2.1  Pre-Teaching

In this stage, the learner is introduced to the graphical technique, especially the 
semantics utilised to represent the text in graphical form. The latter includes 
presenting the set of available links and providing a brief explanation of their 
meanings.

The learner is then told what she is expected to do (i.e., what the learning objec-
tives are). Also important in this stage, is to ascertain the student ‘s background 
knowledge to see whether it is compatible to the minimum prior knowledge the 
program assumes she brings to the task. If the learner lacks adequate prior knowl-
edge to achieve the learning goals, the program should supply her with it, or at 
the very least tell her that she does not have background knowledge sufficient for 
understanding the material. Finally, providing simple exercises by using a domain 
well known to the learner may be helpful here. This stage has been implemented 
by means of a tutorial program described in Chapter 5.

3.2.2  Practice and Tutoring

As its general strategy, MapTutor asks the learner to perform certain operation 
on the text (e.g., select a concept) or on her map (e.g., link two concepts on a 
partial graphical map), evaluates the result of that operation, and provides feed-
back about the efficacy of the operation. What follows is a brief account of how 
MapTutor carries out its duties. 

The concepts of interest in the text are partitioned into two lists: (1) major-concepts, 
containing the learning objectives, i.e.,what must be learned from the text; and 
(2) minor-concepts, containing the auxiliary, explanatory concepts (other than 
those in the first list). Ideally, the learner should, at the end of instruction, know 
all of the concepts of interest in the text, but including on her map all of the 
concepts in the second list is not essential. Membership of these lists is deter-
mined via a relevance score rated in advance by the designer with the help of a 
domain expert, and is independent of the learner (see Section 3.4). The highest 
level of relevance is attached precisely to those concepts in the major-concepts 
list, whereas the lowest level corresponds to examples used to elaborate the text.

At the outset, MapTutor constructs another list, called known-concepts, 
containing those concepts the system assumes the learner knows beforehand. This 
assumption is based on the expected prior knowledge of the target students, who 
are expected to be mature students. For example, in the sample-text presented 
in Table 3–1, the student is assumed to understand the concept of tree, where-
as the same does not hap pen with concept biotic factor. Although a particular 
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learner (e.g., a Biology student) might also know the meaning of biotic factor, it 
is quite unlikely that anyone (in the target-student population) will not know the 
meaning of tree. Thus, no major concept, even if an assumed part of the learn-
er’s background knowledge, is added to this list at the beginning of instruction. 
In other words, the MapTutor requires that the learner demonstrates she really 
knows each major concept by representing them appropriately on her graphical 
map. As instruction progresses, MapTutor keeps list known-concepts by add-
ing or retracting elements (i.e., concepts) according to its beliefs as to whether 
the learner has mastered those elements or not. The informal learnability crite-
rion adopted by MapTutor can be stated as follows:

The learner knows concept C if she has linked C with an ade-
quate number of the most relevant concepts related to it.

This is definition is clearly vague, so that it needs to be made precise. A formal 
definition of this learnability criterion is presented in Section 3.5. By now, the 
important point is that MapTutor determines that the learner has successful-
ly completed the mapping session when all major concepts are known by the 
learner according to the learnability criterion established by the program. More 
formally, the learner will have completed the tutorial session successfully when:

major-concepts ⊆ known-concepts

This mastering criterion will henceforth be known as successful task criterion.

What follows is the general, top-level strategy (algorithm) employed by MapTutor.

While there are concepts to be linked left in the major-concepts list, or the 
learner gives up, do:

1.	 Ask, if necessary, the learner to select two concepts from the text and link 
them together using one of the link names in the canonical set provided.

2.	 If the learner gets stuck (i.e., if she does not know which concepts to choose 
and link), while there are to-be-linked concepts, suggest two relevant con-
cepts for her to consider linking. MapTutor determines that the learner 
has got stuck when either she has asked for help or her stretch of idle time 
(i.e., no-input period) exceeds a predetermined limit. The strategy used 
by MapTutor for suggesting to-be-linked concepts when the learner gets 
stuck is discussed later in Chapter 4.
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3.	 The learner has made a link between two concepts (otherwise, she would 
not have gone out of the loop in Step 2). Determine whether this link is 
acceptable by verifying whet her the corresponding relationship between 
the two concepts can be mapped onto the canonical link the learner has 
just drawn[1].

If the student’s link is considered correct, it will not be further analysed. 
Otherwise, the program raises an exception, called triggering-condition, 
which is set to one of following values according to the status of the wrong 
link[2]:

◊	 t-inexistent-link — when in effect there is no relationship between 
the given concepts.

◊	 t-mismatching-link — when there is a relationship between the given 
concepts, but this relationship cannot be represented by the canonical 
link drawn by the learner.

◊	 t-inverted-link-matching-name — is a special case of 
t-mismatching-link in which the learner may have inadvertently 
drawn the link in the opposite direction. When the learner systematically 
draws links in the direction contrary to that MapTutor expects her to 
draw, it could be the case that the learner prefers to interpret the link 
this manner (see Section 3.7.3). It is acknowledged that MapTutor 
does not address this problem appropriately. That is, all links drawn this 
way are currently treated by MapTutor as slips (but see Section 7.2).

These triggering conditions are used to guide the diagnostic process which 
tries to identify the cause of a wrong link.

4.	 If Step 3 has determined that the student’s link is a correct one, just let 
the learner know in non-obtrusive manner so that she can follow her pro-
gress, and go to Step 8. MapTutor intervenes with parsimony, because it 
is believed that the more a method intervenes in the learning process, the 
more a learner may be distracted from the task at hand.

[1]  From now on, the expression a relationship between two concepts will be taken with the 
meaning a relationship between two concepts as it occurs (either implicitly or explicitly) in the 
text. The expression a link between two concepts will stand for a canonical link drawn between 
two boxes representing concepts on a graphical map.
[2]  Constants and procedure names used throughout this book should not be read as English 
words. Instead, they are symbols which, incidentally, have some resemblance with English names.
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5.	 If Step 3 arises a triggering condition other than 
t-inverted-link-matching-name 

call the top-level diagnostic procedure to try to find out why the learner 
is wrong. If this procedure is successful at determining the nature of the 
wrong link, it returns success along with the relevant nature; otherwise, 
it returns failure. The diagnostic process is discussed thoroughly throu-
ghout Chapter 4, especially in Section 4.3.

6.	 If Step 5 is successful, tell the learner she’s wrong and provide instruction-
al corrective feedback according to the nature of error pointed out by the 
diagnostic procedure (see Section 4.9).

7.	 If Step 5 is not successful, do nothing, i.e., let the learner go on. In this 
case, MapTutor has run out of steam, so that little can be done, except 
perhaps to record the situation as accurately as possible in order to try to 
overcome this weakness in the future.

8.	 Update performance model (see Section 4.3).

9.	 Go back to Step 1.

Note that MapTutor does not impose any right sequence of linking con-
cepts. Thus, the case in which the learner has not added a link where and when 
MapTutor would is postponed to the end of the session. This decision is based 
upon the fact that it is impossible to know whether the learner will add the link 
later during the session. Also, by proceeding so, the program somewhat lets the 
student learn at her own pace and style. Using the tutoring strategy described 
above, MapTutor analyses the student’s input step-by-step, providing interactive 
correction while she is engaged in building a graphic map. This strategy consists 
essentially in monitoring opportunistically the learner and providing immediate 
feedback when the program determines it is necessary to do so.

3.2.3  Post-task Feedback

Right after the learner has finished her map, the program constructs an instruc-
tional plan to provide post-task correction and suggestions about how to im-
prove future maps. This stage consists in analysing the learner’s final map and 
then providing feedback and advice about how to improve it in a way much like 
the expert mapper in Section 2.6.2 does. This idea has been implemented and 
is further explored in Chapter 4.
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3.2.4  MapTutor’s Architecture

MapTutor, the system which implements the second stage of the approach de-
scribed above, can be divided into four main pieces:

A knowledge Base containing information about the to-be-mapped 
text, including all concepts and relationships of 
interest found in it. The knowledge base also 
contains descriptive information about each 
canonical link utilised by the system.

A performance model which not only keeps track of the learner’s 
moves while constructing her map, but also 
and most importantly, tries to evaluate them.

A teaching unit responsible for elaborating feedback whenever 
the performance model determines the system 
should do so.

An interface containing the to-be-mapped text, a set of 
canonical links, a pane where the learner is 
expected to draw her map, and a pane which 
provides her with the necessary feedback.

MapTutor’s general architecture is seen as a diagram showing the communi-
cation which occurs among the various parts of the system in form of message 
passing, as presented in Figure 3–1.

Notice that the Control Centre is in fact a virtual unit whose only function 
is to pass each message on to the unit which is actually able to handle it. The 
Authoring Interface at the top is through where the knowledge is introduced 
into the system, but it is not yet implemented, so that currently a programmer’s 
interface has been used instead (see Chapter 5). MapTutor’s knowledge base 
will be presented throughout the rest of this chapter.
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Figure 3–1:  MapTutor’s Architecture

3.3  Text Analysis��3.3

The first step towards representing a text into MapTutor’s knowledge base is to 
analyse the text into smaller units until the propositional level (see, e.g., Kintsch, 
1974) has been reached. The sample-text presently represented into MapTutor 
is a three-paragraph expository text on Ecology, extracted from Rowland’s (1992) 
Biology textbook. The primary purpose (learning objective) of this text is to 
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define and explain the concept of habitat. Accordingly, the text also contains 
descriptions of other auxiliary concepts (e.g., microhabitat, biotic and abiotic 
factors) as well as explanatory material (instances and examples) which help to 
both clarify and elaborate the main concept. The sample-text was chosen based 
on the following criteria:

•	 fair information density, which is supposed to be adequate for introduc-
tory graphical mapping;

•	 very little amount of background knowledge needed for understanding 
it, based on the subjects’ expected prior knowledge;

•	 a fairly familiar subject in order to try to alleviate the burden of map con-
struction (see McCagg & Dansereau, 1991).

•	 it was not created ad hoc to teach graphical mapping, because, as Holley 
& Dansereau (1984b) observe, the training material should not be so dif-
ferent from actual material as to cause lack of motivation to the learner.

Moreover, the text does not use either adjunct aids (e.g., questions, headings, 
titles, summaries, etc.) or text embellishment with selective function (e.g., high-
lights) which would provide hints to the learner as to where she should pay more 
attention. Table 3–1 presents the unabridged version of the sample-text.

The sample-text was divided into 8 idea units. Each idea unit, which corresponds 
to one or more sentences in the text, was further divided into clauses. This latter 
subdivision included paraphrases and substitution of referents wherever necessary 
to make the clauses as clear as possible (cf. Sharples et al., 1994). For instance, 
the idea unit corresponding to the sentence:

An organism’s habitat is the place where it lives, its address. 

was divided into three clauses:

(a)	a habitat is a place

(b)	organisms live in habitats

(c)	a habitat is like an address

The sample-text was analysed within this framework so as to make it easy for 
the learner to achieve the particular goals of grasping the learning objective and 
learning how to map the text. The content structure (main ideas) of the text is 
outlined in Appendix A.
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An organism’s habitat is the place where it leaves, its address. Our 
woodland is the habitat for a whole host of organism. Many organ-
isms will only occupy a small part of the total habitat, for example, 
the snail in our woodland. This small part of the total habitat is 
called microhabitat.

Each habitat will have certain distinct features which affect the or-
ganisms living in it. On the other hand, there are psycho-chemical 
or abiotic factors: climate, soil, type of water (marine, fresh, run-
ning, still) and so on. On the other hand there are biotic factors, 
which are determined by the organisms which share the habitat. 
For example, organisms which eat each other compete with each 
other for food or provide shelter.
Biotic and abiotic factors are not independent of each other. For 
example, the trees in a woodland affect the humidity, temperature 
and amount of sunlight there. So, trees, a biotic factor, influence 
the psycho-chemical features of the habitat which, in turn, will af-
fect the other organisms living in the woodland. Understanding the 
complexity of interaction between organisms and their habitat is one 
of the challenges faced by ecologists. (Rowland, 1992, pp. 667–8)

Table 3–1:  Sample-Text on Habitat

3.4  Analysis of Concepts��3.4

Subsequent to the text analysis described above, the concepts identified in the 
sample-text were classed into major concepts — i.e., the most important ones to 
the learning objectives — and minor concepts — i.e., concepts used as auxilia-
ry, explanatory material. Each concept was then assigned a rank on a five-point 
scale which indicates its relative importance for the full understanding of the 
text. These concepts and their respective rank scores are summarised in Table 
3–2 and Table 3–3[3].

Also included in the following in Table 3–2 and Table 3–3 is whether each con-
cept will have in its representation a pre-requisite or a definition slot. A concept 
is prerequisite to another if the former is necessarily part of the definition of the 
latter. In the text at hand, only concept microhabitat seems to satisfy this cri-
terion. Typically, minor concepts will not need to have a definition because they 

[3]  I was helped in this concept ranking by Dr Libby John at BIOS, University of Sussex. She 
was also responsible for pointing out some ambiguities in the sample-text and for clarifying 
some pieces of it. I am very grateful for her assistance.
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are used as explanatory devices (e.g., in metaphors and analogies) and therefore 
should be assumed to be well known by the learner target.

In fact, using familiar concepts to explain another unfamiliar one constitutes 
a good educational practice (see, e.g., Good & Brophy, 1990; Howard, 1987).

Concept Rank Prerequisite Definition
habitat 5 none yes
woodland 4 none n/a
organism 4 none n/a
physico-chemical factor 4 none yes
abiotic factor 4 none yes
biotic factor 4 none yes

Table 3–2:  Major Concepts in the Sample Text

Concept Rank Prerequisite Definition
microhabitat 3 habitat yes
place 2 none n/a
address 1 none n/a
snail 2 none n/a
climate 3 none n/a
soil 2 none n/a
type of water 3 none n/a
marine 1 none n/a
fresh 1 none n/a
running 1 none n/a
still 1 none n/a
organisms eating each other 2 none n/a
organisms competing for food 2 none n/a
organisms providing shelter 2 none n/a
tree 2 none n/a
humidity 2 none n/a
temperature 2 none n/a
amount of sunlight 2 none n/a

Table 3–3:  Minor Concepts in the Sample Text
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3.5  Concept Learnability��3.5

MapTutor’s measures of the student’s performance consist of two lists of beliefs 
about the learner:

1.	 believed-concepts is a list containing those concepts which MapTutor 
believes the learner somewhat knows how to map. In other words, 
believed-concepts contains all of the concepts connected thus far to at 
least one other concept on the student’s map.

2.	 known-concepts is a sub-list of believed-concepts containing those 
concepts MapTutor believes the learner knows how to use correctly. 
Membership of this list of elaborated as follows.

Associated with each concept in the list believed-concepts, there is a belief-de-
gree which quantifies the extent to which MapTutor believes the learner knows 
how to use (i.e., map) that concept correctly. The belief-degree of a given con-
cept C is elaborated as follows. Suppose the learner connects C to a number of 
concepts. The extent to which the learner knows how to map C is given by the 
extent to which she knows how to link correctly C to each of the important con-
cepts related to it. Then, assuming that we have an assessment function which, 
given a link, returns the degree of correctness of the link, we can say that. the 
contribution of a link between C and ci to the knowing of C is given by:

(assessment of link between C and ci ) × (relevance of ci )

Remember from Section 3.4 that the relevance of a given concept is given by 
its pre defined rank. Thus, the extent to which the learner knows how to map C 
will be given by the sum over all links between C and ci’s the learner has made, 
which can be written as:

 
ass C c rank ci

i n
i( , ) ( )

1� �
� �

� (3.1)

where n is the number of concepts in the knowledge base representing the text 
at hand, and ass(C, ci ) is a function of assessment of the link made between 
concepts C and ci. Notice that the only constraint in Equation 3.1 is that any ci 
be different from C. This means that the learner is free to link C to any concept 
in the knowledge base, except to C itself.

Now, we will know with absolute certainty that the learner knows how to map 
C when she connects correctly C to all concepts which are actually related to 
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C[4]. If the value returned by our assessment function when the link is correct is 
k, this certainty corresponds to:

k rank c k rank ci i� �� � �( ) ( )
� (3.2)

with ci ranging over all concept which are actually related to C.

Equation 3.2 is defined as the link-value (lv) of concept C, and to make it sim-
pler, constant k is made equal to 1[5]. Therefore, lv can be written as:

LV C rank ci( ) ( )�� � (3.3)

Now, if the assessment function returns a greater value for a correct link than 
for a wrong link (as seems to be intuitive), lv will correspond precisely to the 
maximum value that Equation 3.1 could get. Another important characteristic 
of lv is that, given a concept C, its lv depends only on the ranks of the concepts 
related to it and the value returned by the assessment function for correct links, 
which are both known at the outset.

We can finally· define the belief-degree of a concept as the proportion of the score 
the learner obtained by Equation 3.1 to the maximum score she could possibly 
get, which is given by Equation 3.3. Defined in this way, belief-degree has the 
important property that,

By establishing (experimentally or otherwise) a knowledge thresh-
old we can allow the learner to prove to know how to map a giv-
en concept without necessarily requiring her to link this concept 
to all other concepts related to it. This also means that a large 
number of correct maps can be allowed by the system.

The ideas above are further formalised as follows. Belief-Degree (henceforth bd) 
is calculated for each concept ci in list believed-concepts as:

[4]  Actually related to C means those concepts whose relationships to C have been input into 
the system. That is, those relationships involving C the system knows the existence of.
[5]  This can safely be done because absolute values of the evaluation function do not make 
sense. That is, what matters is that such an evaluation function should return values relative to 
the degree of correctness of the given link. For instance, by just knowing that an assessment 
value is, say, 1, one will not be able to tell whether the link was considered correct, incorrect, 
or some fuzzy value in between. Moreover, in the discussion which follows, it is not necessary 
that a link be considered right or wrong. It could also be represented by a continuous degree of 
correctness, ranging from, say, 0 — representing a wrong link — to 1 — representing a correct 
link. A tree-state scale has been used by MapTutor, but a larger discrete scale or ·even a contin-
uous one could also be used without making many changes in the program.
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where:

•	 n is the number of concepts represented into the program’s knowledge base;

•	 cj ranges over all of the concepts the learner has linked to ci;

•	 ass(ci, cj ) is a function of assessment of the link made between concepts 
ci and cj, which is defined as:

ass(ci, cj ) = 

1, if ci and cj have been correctly linked

0, if ci and cj have been incorrectly linked, but ci and cj 
            are in fact related do each other
-1, if ci and cj have been incorrectly linked, and there is no 
 relationship between ci and cj 

{
These values quantify how good or bad a given link is. Thus, they are to be in-
terpreted as relative values; they are senseless when taken in isolation.

•	 rank(cn ) is the rank of concept cn described in Section 3.4;

•	 lv(ci ), the link-value of concept ci, is defined as follows:

LV c rank ci m
m i

( ) ( )�
�
�

with cm ranging over all concepts actually related to ci
[6].

Given the definitions above, a major concept is a member of list known-concepts 
if its bd is equal to or greater than a given threshold (Knowing-Threshold — 
henceforth kt) which is an arbitrarily pre-set parameter of the program. Note that 
the concept of membership of list known-concepts is dynamic, so that if the 
bd of a major concept which is a member of this list falls below the threshold, it 
is retracted from the list. Currently, kt is set at 0.6, which means that the learner 
will be assumed to know how to map a given concept when her score (bd) ob-
tained for the links she made connecting this concept is 60% of its link-value (lv).
[6]  Notice that, as lv depends only on the pre-set ranks, it is calculated for each concept just 
once, when the given domain is represented into the program. That is, lv is a knowledge rep-
resentation parameter. By contrast, bd is a performance parameter, and therefore, it is calculated 
incrementally during a tutoring session.
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An Example of Belief-Degree Calculation. At this point, an example illustrat-
ing the ideas above may be helpful. Suppose, for instance, that a learner has just 
made a link between concepts c10 and c8, as shown in Figure 3–2.

i (ass = -1)

C12 (1)

C12 (1)

C9 (5)

C2 (5)

C5 (2) C7 (3)

C8 (4)

w (ass = 0)

c (ass = 1)c (ass = 1)

Figure 3–2:  Example of Belief-Degree Calculation 
Figure 3–2 should be interpreted as follows. cn’s are arbitrary concepts; the num-
bers enclosed between parentheses are the ranks of the respective concepts; a full 
line represents a link actually made by the learner; c means a correct link; i means 
an inexistent relationship; w means a wrong link, where there is in fact a relation-
ship; and ass = n means that the assessment function assumes value n. Broken 
lines represent existing relationships which the learner has not considered yet.
In this example, we have:
lv(c10 ) = rank(c9 ) + rank(c2 ) + rank(c7 ) + rank(c5 ) + rank(c8 ) + rank(c12 )

= 5 + 5 + 3 + 2 + 4 + 1
= 20

bd(c10 ) = [ass(c10 , c2 ) × rank(c2 ) + ass(c10 , c7 ) × rank(c7 ) 
+ ass(c10 , c5 ) × rank(c5 ) + ass(c10 , c8 ) × rank(c8 )]/lv(c10 )
= [1 × 5 + 0 × 3 + (–1) × 2 + 1 × 4)/20
= 0.35
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Since bd(c10 ) = 0.35 < kt, c10 would not be a member of list known-concepts. 
It is interesting to observe that, if in a situation subsequent to that described 
in this example, the learner had correctly linked c10 to c12 (rank = 1), then 
bd(c10 ) = 0.40, and c10 would yet not be in known-concepts. However, if she 
had instead correctly linked c10 to c9 (rank = 5), then bd(c10 ) = 0.60, and now 
c10 would then be included in known-concepts. This makes sense because, as 
c9 has rank = 5, it is bound to be part of the gist of the text, whereas c12, with 
rank = 1, is probably merely a detail or example used to elaborate or explain 
the main point of the text. Therefore, it is much more likely that the learner will 
know c10, given that she knows the relationship between it and c9 — an impor-
tant concept — than when she knows the relationship between c10 and c12 — a 
not-so-important concept.

Equivalence of Concepts: A Special Case. A special case, which the learnability 
criterion defined above must take into consideration, occurs when there are two 
concepts which are equivalent to each other (e.g., one concept is the definition 
of the other, or they are represented by synonymous word-concepts). It does not 
seem fair to require the learner to connect (explicitly) all concepts related to such 
a pair of concepts to both concepts in the map. For example, in the sample-text, 
abiotic factor and physico-chemical factor represent the same entity. Hence, 
if, for instance, the learner connects abiotic factor to temperature, she may 
still connect this latter concept to physico-chemical factor, but she will not 
be required to do so. This appears to be reasonable because the second link does 
not add very much to the learner’s knowledge about those concepts. But, if a 
learner decides to link the related concepts to only one concept of the equiv-
alence pair (say, abiotic factor in our example), how will the other concept 
(physico-chemical factor in our example) have its bd increased so that this 
concept will be considered as a known concept? The solution for this particular 
problem takes three steps:

1.	 Only one concept[7] of a pair of equivalent concepts is taken into consid-
eration when calculating the link value of other concepts connected to 
the pair.

2.	 When the learner links a concept c1 to two other concepts, c2 and c3, and 
these latter concepts are equivalent, only the first link will be taken into 
consideration for the bd calculation of c1

[8].
[7]  Of course,  since the concepts  are equivalent,  they  will  have the same ranks  and  link-val-
ues.  Thus, the choice  of  which  concept  will  be  chosen  is completely irrelevant.
[8]  This solution is provisional and will be consistent only when both links are either right or 
wrong (i.e.,  when the links themselves are consistent). But, what if the learner’s first link is correct  
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3.	 The learnability criterion will be generalised so that it is applicable to this 
special situation. The new learnability criterion is then defined as follows.

The learner will know concept c1 when she knows c1 by applying 
the old criterion defined above, or she knows c2, c2 is equivalent 
to c1, and  she has  proven to know this fact by connecting c1 
and c2 by using the appropriate link (e.g., link equivalent).

3.6  MapTutor Links��3.6

The links currently used by MapTutor are among those most commonly used 
in graphical strategies research (see Section 2.4). These links are presented in 
Table 3–4 and their meanings have already been extensively discussed earlier.

MapTutor does not purport to present a general set of canonical links which 
could be used with all kinds of texts. Nevertheless, even without encompassing 
all possible relationships which could occur in an arbitrary expository text, the 
links chosen for the sample-set used in this research appear to be sufficient for 
encoding example texts, and thus are quite suitable for experimental purposes.

Link
part of

is a
leads to

equivalent
has property

Table 3–4:  Sample-Set of Links Employed by MapTutor

The choice of the sample-set of links for MapTutor does have empirical sup-
port (see Section 2.4; see also Holley & Dansereau, 1984b). It should also be 
emphasised that the proposed system allows for the use of different sets of links 
as well as different texts. MapTutor achieves this by having its diagnostic and 
teaching modules independent from any particular set of links. That means that 

and  the second one is wrong (or vice-versa). Should we always consider the correct link or the 
wrong one in the BD calculation of the concept? Should we always consider the first link (be it 
correct or not)? Why not consider always the second link? Perhaps the learner’s misunderstand-
ing is that she does not know  that the two equivalent concepts are actually equivalent.  No  
easy solution  has been found  to this  question, but  in any  case, feedback  will be  provided  
for  both  links.   This  problem  stem  from  the fact  that this research  has not  concentrated  
on reasoning  over links  and how  they fit together  in an overall  map.
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MapTutor’s design allows, without any further modifications, the set of links 
to be easily changed if they eventually prove to be inadequate (see Chapter 5).

3.7  Knowledge Representation��3.7

3.7.1  Representation of Concepts

MapTutor keeps a list containing definitions and some additional information 
about the concepts found in the to-be-mapped text. These concepts are repre-
sented into MapTutor’s knowledge base according to the concept Prototype 
presented in Table 3–5.

According to the concept Prototype, Name is the word-concept (Quillian, 1968) 
which represents the given concept; Definition is the concept’s definition, if ap-
plicable (see above); Rank is the concept’s rank described above; Prerequisite is 
the concept, if any, that should be learned before the one being described; Link 
value lv is the concept’s link value described earlier in Section 3.5. Slot Equivalent 
to contains a concept which is equivalent to the one being described. This slot is 
necessary for implementing that special case of concept learnability discussed in 
Section 3.5. The last two slots — Default location and Where in text — are 
not conceptually important for this book. Default location corresponds to where 
the concept will initially be drawn on the map pane when the learner selects a 
concept for the first time in the text, and Where in text is a list containing the 
positions in the text where the concept can be found; the program uses such lists 
to decide whether the learner has select or not a concept after clicking the mouse 
on the text. Therefore, these are more specific implementation details and inter-
face features employed by the program described here. As an example, concept 
microhabitat has the representation shown in Table 3–6.

The representation of all concepts found in the sample-text used by MapTutor 
can be found in Appendix B.

Slot Definition
Name the concept’s name

Definition the concept’s definition (if any, see Section 4.3 
and Section 4.9)

Rank the concept’s rank

Prerequisite the concept (if any) that should be learned before 
the one being described

Link value the concept’s link value
Equivalent to the concept’s equivalent
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Slot Definition

Default location where the concept will initially be drawn on the 
map pane

Where in text list containing the positions in the text where the 
concept can be found

Table 3–5:  Concept Prototype

Slot Value
Name microhabitat

Definition

Microhabitat is a very small, specialised habi-
tat, such as a clump of grass or an open space 
between rocks. [Adapted from The American 
Heritage Dictionary of the English Language, 
Third Edition, Copyright ©1992 by Houghton 
Mifflin Company, Microsoft-BookShelf 1994.]

Rank 4
Prerequisite habitat
Link value 10
Equivalent to none

Default location (11, 163) [Top, left of the concept’s enclosing 
rectangle in the map pane’s coordinate system.]

Where in text [(277, 289) [This concept ·appears only once 
in the given text.]

Table 3–6:  Representation of Concept microhabitat

3.7.2  Representation of Links

MapTutor keeps a list containing definitions and other useful information 
about each link in the set of canonical links provided by the program. Each link 
in MapTutor’s knowledge base is represented according to the link Prototype 
shown in Table 3–7.

The first three slots — Full name, Short name and Abbreviation — are all used 
to identify the given link and their distinction is not conceptually important. 
Full name is used by the program when it provides feedback; Short name is used 
by the program to label the buttons representing the links in the interface; and 
Abbreviation is the label used in the links drawn on the map[9]. The distinction 

[9]  Short name  and Abbreviation  are used in order to avoid cluttering the interface and 
the student’s  map, respectively.
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made between Definition and Meaning in Table 3–7 is that a link’s definition 
stands for itself, whereas its meaning represents how the link should be interpreted 
once it connects two (boxes  representing) concepts on the graphical  map. Slot 
Inherently ambiguous provides some clue  to the program by anticipating a po-
tential source of difficulty the learner could face in interpreting the meaning of 
the link being described. For example, although the semantics of link is a seems 
to be clearly well defined, the same does not always happen with link leads to.

Slot Coexists with contains precisely the link (if any) which can be used togeth-
er with the one being described without being either redundant or duplicated. 
If there are two links which can coexist with each other, this coexistence must 
mean links in opposite directions, otherwise the link system will at best be re-
dundant (if not ambiguous). In the current canonical link system employed by 
MapTutor, only link leads to can coexist with itself[10]. For example, biotic and 
abiotic factors affect each other can be represented by the following canonical 
propositions: biotic factors leads to abiotic factors and abiotic factors leads to biotic 
factors. Finally, as seen in Chapter 2, canonical links should not be taken liter-
ally by the word used to label them. Instead, they have meanings broader than 
the corresponding English words. Slot Keywords represents a list containing the 
keywords depicting actual relationships which the link is supposed to cover. Link 
part of, for example, has the representation shown in Table 3–8.

Slot Definition
Full name the link’s full name

Short name the link’s short name; used in the link’s 
pane

Abbreviation the link’s abbreviation
Definition the link’s definition
Meaning the link’s meaning

Inherently ambiguous whether or not the link’s is inherently 
ambiguous

Coexists with the link which can be used together with 
this one

Keywords the set of keywords which indicates the 
link’s usage

Table 3–7:  Link Prototype

[10]  Strictly speaking, is a can coexist with itself. But, if we have both c1 is a c2 and c2 is a c1 si-
multaneously, then the most appropriate link will be equivalent. Teaching the most appropriate 
link is what  MapTutor is all about.
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Slot Value
Full name is part of
Short name part of
Abbreviation part

Definition
A concept is is part of another concept when 
the first is a piece, portion or integral constit-
uent of the second (the whole)

Meaning
The concept represented by the origin node 
is part of the concept represented by the 
terminal node.

Inherently ambiguous no
Coexists with none
Keywords [part, segment, portion]

Table 3–8:  Representation of Link part of

The representation of all links used by MapTutor during its experimental stage 
can be found in Appendix C.

3.7.3  Representation of Relationships

MapTutor keeps information not only about the relationships which hold among 
concepts in the text, but also about how to map each relationship onto one of 
the canonical links provided. Each relationship of interest found in the to-be-
mapped text is represented into MapTutor’s knowledge base according to the 
relationship Prototype depicted in Table 3–9.

Slot Definition

Link the canonical link the relationship should be 
mapped onto

Original concept one of the concepts connected by the relation
Terminal concept the other concept connected by the relation
Is explicit whether or not the relation is explicit in the text

Ambiguous whether or not the relation is ambiguous in the 
text

Reasoning needed estimated amount of reasoning needed to uncover 
the actual relationship in the text

Justifications the justification for the choice of the expected link
Where in text where the relation can be found in the text

Table 3–9:  Relationship Prototype
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Link stands for an appropriate canonical link, from the set of links currently 
provided, onto which the relationship can be mapped. Notice that each relation-
ship is represented as many times as the number of links it can be mapped onto. 
Origin concept and Terminal concept are the (boxes representing) concepts the 
link drawn on the map originate and terminate at, respectively. This distinction 
is made on the map by means of arrows which indicate the direction of the link 
being depicted. The direction of a link specifies how the link should be read. 
This choice is· arbitrary, but once made, one must stick to it in order to avoid 
confusion. For example, as seen in Section 2.3.1, Holley & Dansereau (1984b) 
prefer looking at link part of from an owner-concept to an owned-concept (see 
Figure 2–1), so that the link has (say) the intended meaning has part. On the 
other hand, I have found it more natural to represent the same link in the oppo-
site direction, with the intended meaning of (say) is part of. Future expansion 
of the system described here should allow the learner choose the direction that 
best suits her interpretation and style of looking at relationships. Slot Is explicit 
indicates whether the relation is explicit in the text, or whether it is implicit and 
requires some inferences in order to uncover it. Slot Is ambiguous tells the pro-
gram whether or not the relation appears ambiguous in the text, and therefore 
may be hard for the learner to interpret. Because the program is designed to use 
real-world texts, it is important to have fed into the system information about 
ambiguity, which occurs very frequently in many pieces of text. For example, a 
close look at the following excerpt taken from the sample-text[11],

Many organisms will only occupy a small part of the total habitat, for example, the 
snail in our woodland. This small part of the total habitat is called microhabitat.

reveals that it is not clear whether the author’s intended meaning is the snail’s 
habitat (which is a small part of the woodland — a habitat) is a microhabitat 
or the snail occupies our (whole) woodland, which is a microhabitat (of a larger 
habitat around it).

Reasoning needed is the amount of reasoning necessary to uncover the actual re-
lationship in the text, as estimated by the designer. The motivation for including 
this information is not only the same as that of information about ambiguous 
pieces of text, but also this slot estimates the mental effort the learner will spend 
to map the relation ship onto one of the links provided by the system, after she 
has correctly identified it in the text. Currently the system uses a three-point 
reasoning scale: easy — the designer believes the learner will have no problem 
in understand the relationship; difficult —  when the designer anticipates the 

[11]  It is not really fair talking about a piece of text taken out of context. Lest you are not 
convinced, take a look at the text itself.
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learner will have trouble when trying to understand and then map the given re-
lationship; fair — if the degree of difficulty falls somewhere in between. The 
Justifications slot is a pair of justifications the program uses in order to provide 
feedback which justifies the choice of the expected link. This slot uses a pre
specified format which will be further explored later in Chapter 4.

Finally, slot Where in text is not conceptually interesting; it simply tells the pro-
gram where the relation can be found in the text, so that it can provide the learn-
er with some visual feedback. As an example, the relationship between concepts 
organisms and habitat found in the text has the representation presented in 
Table 3–10[12].

Slot Value
Link part of
Original concept organisms
Terminal concept habitat
Is explicit no
Ambiguous no
Reasoning needed fair

Justifications [rj2: organisms live in habitat, rj4: if some-
one lives in some place, they are part of it]

Where in text (0, 49)

Table 3–10:  Representation of the Relationship between organisms and habitat

The representation of all relationships of interest found in the sample-text used 
by MapTutor can be found in Appendix A.

3.8  The Importance and the Role of the Expert’s 
Knowledge��3.8

In order to produce the ranking of concepts described above, the expert was asked 
to rate the list of concepts[13] found in the text. In the ranking of the sample-text, 
a five-point scale was used, and the expert was asked to rank the concepts accord-
ing to this scale, with the most important concepts having the highest scores. 
After this numerical ranking was completed, the concepts were divided into mi-
nor ones (i.e., those concept with rankings four and five) and major ones (i.e., 
those with ranking from one to three).

[12]  The indexes preceding the justifications slot in this example will become evident latter.
[13]  The designer should avoid including in this list those concepts which are too general 
(e.g., features in the sample-text).
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It should be emphasised that the ranking of concepts depends on the subjective 
judgement of the expert (or instructional designer) about what the most impor-
tant concepts in the text are. Major concepts correspond to what the instruc-
tional designer believes to be the concepts essential for the learner to understand 
the text at hand, whereas minor concepts are not essential for this purpose[14]. A 
major concept is required to be adequately mapped according to MapTutor’s 
learnability criterion discussed in Section 3.5, whereas the learner is allowed to 
choose among the minor concepts the ones she prefers to include in her map. To 
reduce the dependency on the judgement of a single expert, this classification of 
concepts should ideally be carried out by, say, three experts instead of only one. 
The resulting rankings would then be taken to be the averages of the rankings 
from the three experts. This approach has not been adopted in the current re-
search simply because experts were in very short supply.

Usually, an expository text contains too many ideas (concepts) and relationships 
among them, so that the learner is not able to memorise everything (or even most 
things) she comes across when reading the text. Thus, the learner must focus 
attention on the important points of the text and engage in activities that help 
her to encode the main ideas, even when this means not learning other less im-
portant information (Anderson & Armbruster, 1982). The learner’s knowledge 
about the task requirements, that is, her knowledge about what is to be learned 
or remembered from the text, may range from complete knowledge (e.g., when 
the teacher specifies in detail what the learner should learn) to almost no knowl-
edge (e.g., when the teacher simply asks the student to study a book’s chapter) 
(Anderson & Armbruster, 1982). It has been shown that the learner achieves better 
results (i.e., learns more) when the requirements are specific and explicitly pro-
vided than when they are too general and vague, or not provided at all. Learning 
goals are closely related to (but different from) task requirements. According to 
Rothkopf (1982), goals are used by the learner to identify text elements which 
are particularly important for achieving the task requirements. He also suggests 
that knowledge about the goals is a necessary ingredient for learning from text, 
since this knowledge,is responsible for guiding the learner’s selective processes 
(i.e., for determining what is important and what is not important for the par-
ticular learning task).

What follows from the discussion above is that when the learner’s goals conflict 
with the task requirements, specified in the current situation by the instructional 

[14]  For instance, a concept which could be substituted for another (different) one without 
jeopardising the text’s general meaning should not be considered as essential for its under-
standing. Thus, this concept would not be expected to be a major one.
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designer by means of the concept rankings described above, she may have trou-
ble in constructing her map under the supervision of MapTutor. For example, 
if the learner believes that a given concept is not so important as to be includ-
ed in her map, and in fact this concept has been classified as a major one, the 
successful task criterion (see Section 3.2.2) adopted by MapTutor will not be 
fulfilled. The difficulty faced by the learner in this example would be similar to 
that which would happen in a conventional, analogous situation in which the 
task requirements (e.g., summarising the main points of a chapter) specified by 
a teacher conflicted with the learner’s own goals. To avoid this sort of problems, 
the learner ought to be told what the learning objectives (i.e., the essential to-
be-mapped concepts) are before starting a training session with the program.

3.9  The Influence of the Learner’s Prior Knowledge��3.9

The knowledge the student brings to a reading task can be divided into (Dole, 
Duffy, Roehler, & Pearson, 1991): (1) specific knowledge (i.e., knowledge about 
the topic); (2) general knowledge (e.g., knowledge about how to draw inferenc-
es); (3) knowledge about the organisation of the text and (4) knowledge about 
reading strategies (including metacognition). The learner uses prior knowledge 
to rate the importance of segments of the text (Dole et al., 1991); to draw in-
ferences (McKoon & Ratcliff, 1992); to elaborate the text (Reder, 1980); to 
monitor comprehension (Brown, Armbruster, & Baker, 1986); and ultimately 
to construct a model of comprehension (van Dijk & Kintsch, 1983). Linguistic 
knowledge is also a key factor for learning from text (see, e.g., Breuker, 1984)[15].

It seems clear that the processes of extraction and encoding of meaning of a text 
depend as much on the learner’s prior knowledge as on the characteristics of the 
text itself. Applying a given graphical strategy to a piece of text consists essentially 
in selecting important concepts and relationships, and then depicting them in 
a diagram following certain conventions. Most graphical strategies require the 
learner to make explicit the relationships using a constrained set of links or spe-
cial symbols. Relationships between concepts are not always explicit in the text, 
and thus, often need to be inferred by the learner. This happens because no text 
contains explicitly all the information it conveys.

[15]  Other factors such as affective and conative processes (see, e.g., Snow & Farr, 1987); styles 
of learning (see, e.g., Entwistle, 1981; Messick, 1987); intelligence (see, e.g., Sternberg, 1988); and 
individual differences (see, e.g., Snow, 1989) can also play a crucial role in learning.
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It follows that inferences[16] have to be made in order to understand the content 
of any text. In order to draw inferences, the reader uses prior knowledge and 
knowledge about the parts of the text already read (Just & Carpenter, 1987).

The necessity of inferences and its dependency on the learner’s prior knowledge 
illustrate the fact that applying the mapping strategy does depend upon this 
latter factor. Inferences are essential for uncovering hidden relationships, which 
in turn is essential for mapping. The data collected from the exploratory study 
described in Chapter 6 and Appendix D seem to indicate that the influence of 
prior knowledge can be beneficial[17] or detrimental[18] for learning the mapping 
strategy using MapTutor.

MapTutor’s target-users should somehow be familiar with the domain represent-
ed into the program, but they are not required to have any knowledge about the 
mapping strategy. Also, one could further anticipate the influence of the learner’s 
prior knowledge along two dimensions: (1) familiarity with the domain; and (2) 
familiarity with the mapping strategy. Table 3–11 summarises the four extreme 
cases (i.e., familiar/not-familiar) regarding these dimensions of prior knowledge. 
These cases are further explained below:

Case I: The learner is familiar with both the domain and the map-
ping strategy. In this case, she is expected to have little gain 
in learning since she already knows how to use the strat-
egy and will learn little (if anything) about the domain.

Case II: The learner is familiar with the mapping strategy, but not 
with the domain. In this case, she will benefit from learn-
ing the domain as well as by practising more the strategy.

Case Ill: The learner is familiar with the domain, but not with the 
mapping strategy. In this case, she is expected to benefit 
most because she will spend most of her cognitive effort 
learning the strategy itself (as opposed to trying to make 
sense out of an unfamiliar domain).

[16]  Inference, according to McKoon & Ratcliff (1992), is ‘any piece of information that is not 
explicitly stated in a text’ (p. 440).
[17]  For example, when the learner has already some previous knowledge about the strategy 
— as in the case of subject S5 in Appendix D.
[18]  For example, when the learner insists on representing her own naive knowledge or  
MapTutor does not possess the necessary background knowledge — as in the case of subject 

S4  in Appendix D.
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Case IV: The learner is neither familiar with the domain nor with 
the map ping strategy. In this case, she might still benefit 
from learning the strategy, but as she might have diffi-
culties in understanding the domain, she will probably 
be overburdened.

Familiar with domain Not familiar with 
domain

Familiar with 
mapping

Case I: Learner will ben-
efit least

Case II: Learner might 
benefit

Not familiar with 
mapping

Case III: Learner will ben-
efit most

Case IV: Learner might be 
overburdened

Table 3–11:  Expected Influence of Prior Knowledge in Learning How to Map

3.10  Conclusion��3.10

This chapter outlined the general strategy followed by MapTutor - a computer 
pro gram which has been proposed as a solution for teaching graphical map-
ping. It has also presented the program’s architecture as well as its knowledge 
component. It could be argued that with the way this knowledge is defined it 
explores very few ideas of artificial intelligence, as Feifer (1989), for example, did. 
Nevertheless, a more detailed (i.e., more fine-grained) level of representation is 
unnecessary to the use MapTutor makes of its knowledge base. The knowledge 
structure of MapTutor presents two great advantages in relation to Sherlock: 
(1) it is much easier to both specify and implement than the semantic network 
employed by the latter program; and (2) more important, despite its simplicity, 
it is sufficient to identify causes of error at the right level and thus provide ap-
propriate individualised feedback.

MapTutor’s goal is to assist a student in drawing a map representing her under 
standing of a given piece of text. Conceptually speaking, the cognitive tasks in-
volved in the use of a graphical strategy consist in breaking the text down into 
parts, identifying the relationships among these parts, and then representing them 
using the syntax adopted by the graphical strategy (Weinstein & Mayer, 1986). 
Thus, it seems clear that the application of a graphical learning strategy involves 
the entanglement of understanding the text at hand as well as the technique it-
self. Therefore, in addition to the teaching of a graphical learning strategy, the 
program is also concerned with the acquisition of declarative knowledge from 
educational text. As such, the program diagnosis and feedback are based upon 
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two types of knowledge: (1) about the text being read; and (2) about the map 
being constructed. Nonetheless, despite the inherent entanglement between un-
derstanding the text and learning how to map, it should be emphasised that the 
current research has been primarily concerned with how to facilitate the training 
of a graphical learning strategy. In other words, the learning of the text should 
be seen as a by-product of the program.

A learning strategy can be classified according to its generality. A content-dependent 
strategy is one which is tailored to particular types of text. Content-independent 
strategies, on the other hand, are intended to be general and in principle can be 
applied to any educational text, although students may have difficulty in adapt-
ing the strategy to particular types of text they come across (Dansereau, 1985). 
All the graphical learning strategies mentioned in this book are to large extent 
content-independent. Accordingly, the expected generality of MapTutor is that 
the knowledge about the mapping strategy the learner acquires ought to transfer 
(ideally) to most other mapping situations (with/without using computers) in-
volving educational texts. However, MapTutor does not purport to teach graph-
ical learning strategies in general, since, as seen in Chapter 2, there are a wide 
variety of such strategies, and the syntax/semantics employed by some of them 
may be rather different from the mapping strategy. For example, the knowledge 
acquired by using the program is not even expected to transfer to concept map-
ping (see Section 2.3.5; see also Novak & Gowin, 1984), despite the apparent 
similarity between the two strategies. The main reason for this, in this particular 
example, is that the concept mapping strategy (as defined by Novak & Gowin, 
1984) emphasises the ideas of subsumption (Ausuel et al., 1978) and hierarchy 
(see Section 2.3.5 for further details), whereas the mapping strategy implemented 
by MapTutor does not. Thus, in summary, the users of the program are expected 
to learn the mapping strategy by means of a systematic analysis of understanding 
possible relationships between concepts, and depicting them using the syntax 
of nodes and links employed by this particular strategy. This includes mapping 
the actual relationships found in the text at hand onto the set of canonical links 
provided by the system.

Finally, an important point of this chapter are the definitions of the criterion of 
concept learnability and the successful task criterion adopted by MapTutor. The 
importance of these definitions is that they allows us: (1) to quantify how much 
of the learning objectives the learner has already accomplished in any instant of 
an interactive session with the program, and thus to be able to decide when the 
she has or has not already done enough; (2) to have some hint as to where look 
for potential source of misunderstanding. The latter will be explored next chapter.




