
105

5.1  Introduction��5.1

This chapter is mostly dedicated to MapTutor’s graphical interface. It also pre-
sents specific details of the implementation of MapTutor. Section 5.2 presents
the ideas that guided the design of the program. Section 5.3 sets out a descrip-
tion of MapTutor’s interface and its components. Section 5.4 describes the
strategies and data used by the program in order to keep track of the learner’s
actions. Section 5.5 present the tutorial and help programs — two separate (but
not independent) auxiliary programs used by MapTutor to present tutorial and
help, respectively. Section 5.6 describes how the learner should use MapTutor
effectively. Section 5.7 presents details about how the program intervenes and
delivers feedback messages. Section 5.8 discusses the utility of the end-of-session
reports created by MapTutor. Section 5.9 describe how the knowledge should
be entered into MapTutor. Finally, Section 5.10 presents some implementation
details concerning the language and platform utilised.

5.2  Design Considerations��5.2

The construction of the interface should be the first step in the implementation
of any non-trivial, highly interactive program because it helps the designer to
have the first impressions about what the final product will look like, and also
she will be able to anticipate which functions the rest of the program will have
to provide to support its interface, and vice-versa. Anderson et al. (1992) sug-
gest that the interface of a computer based tutor should be designed in such a
way that it would allow the learner to resolve the problem posed to her without
any help from the computer tutor itself. It could also be added that the interface
must carry out some low-level functions, such as translating the states of the
problem and doing bookkeeping of the objects, on behalf of other parts of the
tutor. This latter function has been crucial in the design and implementation of
MapTutor’s interface.

The design of MapTutor consisted basically in determining which functions
would be necessary to implement those capabilities specified in previous chap-
ters and the support necessary for providing the learner with a friendly environ-
ment to resolve the problem without additional load. The latter means that the

Chapter

55 MapTutor:
Implementation and Trace

Chapter 5 – MapTutor: Implementation and Trace

106

program should be nearly as easy to use as its conventional counterpart (i.e.,
paper-and-pencil mapping). Moreover, the program should also be easy to learn
to operate, and this would include providing facilities such as on-line help and
tutorial. In MapTutor, these facilities constitute, in fact, separate (but not in-
dependent) applications which have been integrated seamlessly with the main
program by means of an interapplication communication protocol (see details
in Section 5.5).

MapTutor’s interface carries out unnecessary details of the problem solution
which the learner is expected not to have difficulties to learn (see Anderson et al.,
1992). These details include, for example, drawing concepts in the mapping pane
on behalf of the learner and highlighting a selected concept once the learner has
clicked on a piece of text which contains the desired concept. Moreover, the in-
terface provide mapping tools which make the program much easier to use than,
for instance, by using menus. MapTutor’s interface will be fully described next.

5.3  MapTutor’s Interface��5.3

At the very beginning of this research project, it was determined that MapTutor’
interface should have the following components:

•	 Concepts Pane — containing a set of pre-selected concepts extracted
from the to-be-mapped text.

•	 Links Pane — containing a set of canonical links.

•	 Map Pane — where the maps are drawn.

•	 Tutor Pane — which would be responsible for delivering feedback messages.

Had MapTutor stuck to this design, it could face problems similar to those
Feifer (1989) had with multiple interpretations of word-concepts (i.e., icons in
his notations). Then, the Concepts Pane described above was replaced by a Text
Pane. Surprisingly, it later became clear that include the text into the interface
of MapTutor would also bring some advantages such as:

•	 it allows MapTutor to address the selection issue (see Chapter 1) in a
very natural way, that is, it enables the learner to indicate concepts in their
textual context; and

•	 when a certain tutorial intervention needs to refer to parts of the text at
hand, it can easily do so by highlighting the respective piece of text in
that pane.

� 5.3  MapTutor’s Interface

107

Figure 5–1 shows the opening screen of MapTutor. It shows that the program
has four active windows[1]:

•	 Main window — containing the map pane;
•	 Text-and-links window — containing the map pane mentioned above,

and two panes related to the set of canonical links used by MapTutor:
the links pane — containing a set of buttons corresponding to the set of
links utilised, and the links definitions pane — containing definitions
of each link in the set of links.

•	 Tutor window — which contains the tutor pane represented by an icon.
•	 Tools window — which contains two associated panes: the tools pane

— containing a grid with the mapping tools plus a tool where the learner
can ask for help, and the tools definitions pane — a small pane situated
below the tools grid whose sole purpose is to provide definitions of each
of these tools.

File Edit Experimental

S3's Map

HAS PROPERTY

LEADS TO

PART OF

DIFFERENT

EQUIVALENT

IS A

An organism's habitat is the place where it
leaves, its address. Our woodland is the
habitat for a whole host of organism. Many
organisms will only occupy a small part of the
total habitat, for example, the snail in our
woodland. This small part of the total habitat is
called microhabitat.

Each habitat will have certain distinct features
which affect the organisms living in it. On the
other hand, there are psycho-chemical or
abiotic factors: climate, soil, type of water
(marine, fresh, running, still) and so on. On
the other hand there are biotic factors, which
are determined by the organisms which share
the habitat. For example, organisms which eat
each other compete with each other for food
or provide shelter.

Biotic and abiotic factors are not independent
of each other. For example, the trees in a
woodland affect the humidity, temperature
and amount of sunlight there. So, trees, a
biotic factor, influence the psycho-chemical

A concept is PART OF another concept when the
first is a piece, portion or integral constituent of the
second (the whole).

L1 → L2 ?

Welcome to MapTutor Tutorial. This tutorial is
intended to teach you how to get started with
MapTutor and provide you with basic information
about how to use the program.

If you want to continue this tutorial click Continue.
Otherwise, close this window.

1

Continue

Figure 5–1:  MapTutor’s Opening Screen

In Figure 5–1, the text and links window is on the right hand side. The main
window is the largest one. At its left-top side, is the tutor window, and at its

[1]  Notice that the window over the left-bottom portion of the main window does not belong
(directly) to MapTutor, but to its associated tutorial program.

Chapter 5 – MapTutor: Implementation and Trace

108

right-top side is the tools window. The dialogue window at the bottom belongs
to the tutorial program.

Figure 5–2 shows the hierarchy which holds among the interface elements
(views) of MapTutor. This hierarchy should not be confused with the box named
Structured Interface in Figure 3–1, in Chapter 3, which briefly describes how
some of these views communicate with each other. The visual hierarchy provides
a panoramic visualisation of all the visible objects (i.e., views) which MapTutor
knows about. The visual hierarchy is based upon the notion of enclosures, so that
a given view in the hierarchy encloses its descendants (if any) and is enclosed by
its ancestors (if any). For example, in Figure 5–2, the Links Pane encloses the
Link1 Pane — one of its descendants, and is enclosed by the Text and Links
Window — its ancestor.

MapTutor’s interface is event-driven, and almost all input events are mouse-
based ones. This means that the program basically does not handle keystrokes
because they are unnecessary for the learner to resolve the problem posed to her
(i.e., drawing a graphical map)[2]. There are two types of mouse events handled
by MapTutor:

1.	 Mouse movements — these events are responsible for changing the form
of the cursor to provide visual clues which suggest the operation which
can be carried out by clicking the mouse on the region the cursor is over.
Table 5–1 presents the several cursor shapes used by the program and
when they are applicable.

2.	 Mouse clicks — these events are not only responsible for changing the
state of solution of the problem at hand, but they can also invoke other
auxiliary functions, such as asking for help. The effects of clicks on the
several views of the interface are presented in Table 5–2.

When the cursor is over any part of the interface other than the ones listed in
Table 5–1, the cursor is set to an arrow shape. This is the default shape and in-
dicates that clicking on any interface view while the cursor has this shape has no
effect for the solution of the problem.

Notice that the actions described in Table 5–2 refers to good clicks, that is,
clicks which comply with MapTutor’s requirements. For example, if the learner

[2]  As a matter of fact, all keystrokes (except, of course, when the program asks for the stu-
dent’s name at the beginning of a new session) handled by MapTutor are redundant and are still
kept either for compatibility reasons or to offer keyboard short-cuts. The latter are intended to
be used by advanced users.

� 5.3  MapTutor’s Interface

109

attempts to draw a link which does not lead to any concept, the link will be dis-
allowed and no action will be produced.

Map Pane

Desktop

Links Defs Pane Tools Defs Pane

Tutor Window

Tools PaneText PaneTutor Icon Pane Links Pane

Link 1 Link n...

Text & Links WindowMain Window Tools Window

Figure 5–2:  MapTutor’s Visual Hierarchy

In addition to changing cursor shapes, MapTutor provides some other visual
clues. For example, an animated marquee[3] around a selected concept in the map
pane is a visual clue which indicates that the concept can be moved to another
position in this pane (see details below). To have this marquee appear around a
given concept the learner must click on the corresponding concept in the text.
Likewise, the program draws a marquee around the name of a selected link in
the map pane to indicate that subsequent actions invoked by using the mapping
tools will affect this link (see details below).

When the cursor is over... It changes its shape to...

The Text Pane
finger cursor — indicating that
a concept can be selected in the
text.

A button in the Links Pane
finger cursor — indicating that
a link name can be selected by
clicking on this button.

[3]  This marquee ‘is a rectangle with edges that appear to be sliding around the perimeter,
like an old fashioned nightclub sign’ (Knaster & Rollin, 1992, p. 237). It is also known as march-
ing ants in the computer graphics jargon.

Chapter 5 – MapTutor: Implementation and Trace

110

When the cursor is over... It changes its shape to...

The Tutor Pane

question-mark cursor — indi-
cating that some feedback mes-
sage can be provided if this pane
is clicked on. (Only when the
tutor has some queued message
to deliver.)

A selected concept in the
Map Pane

hand-grabber cursor — indicat-
ing that this concept can be move
around the map pane.

Close to a concept in the Map
Pane (or inside a non-select-
ed one)

pencil cursor — indicating that
a link can be drawn to connect
this concept to another.

An icon in the Tools Pane
finger cursor— indicating that
an action can be executed by
clicking on this icon.

Table 5–1:  Cursor Shapes Used by MapTutor

When the click is on... The result is...

A piece of text containing an
important concept

the concept is drawn in the map
pane, or if it has already been
drawn, it is selected in that pane.

A button in the Links Pane

the link name becomes the active
one, and all links subsequent-
ly drawn in the map pane will
have this name until a new one
is selected.

The Tutor Pane if available, feedback is provided.
A selected concept in the
Map Pane

the concept can be move around
the map pane.

Close to a concept in the Map
Pane (or inside a non-select-
ed one)

a link originating at this concept
can be drawn.

An icon in the Tools Pane the action corresponding to the
icon is executed.

Table 5–2:  The Effect of Mouse Clicks

� 5.3  MapTutor’s Interface

111

5.3.1  The Text Pane

In the text pane, the learner is expected to select concepts for including in her
map in the map pane. Thus, this pane addresses the issue of text selection, which
all learning strategies for reading comprehension require. The use of this pane
also eliminates, or at least reduces to a minimum, the problem of multiple in-
terpretations of concepts by tying boxes representing concepts in the learner’s
graphical map with word-concepts in the text. Physically, this is achieved by only
allowing that concepts be moved or drawn in the map pane after one of its re-
spective occurrences in the text has been selected (i.e., clicked on).

MapTutor determines when the learner has selected a concept in the text af-
ter clicking on somewhere in this pane by examining the slot where in text (see
Section 3.7.1) for each concept. When the learner’s click hits a given concept
of interest, the program highlights it in the text, and either draws the concept in
the map pane — if it has not already been drawn — or otherwise, just selects it
in the map pane by drawing a marquee around it, as described above. Although
the program does not allow the learner to draw a concept directly in the pane,
selecting a concept for the first time in the text pane works as if she asked the
program to draw the concept on her behalf. After all, drawing a box containing
a concept’s name is not a crucial issue in graphical mapping. If the learner’s click
on the text pane does not hit any concept relevant to the learning objectives,
MapTutor will present a warning message (upon the learner’s request only —
see Section 5.7) saying that there was no interesting concept where the she just
clicked.

An alternative way of selecting concepts in the text was initially tried out. It
consisted of allowing the learner to make the desired selection by dragging the
cursor (as most modern word processors allow), and then checking the selected
piece of text to verify whether it is relevant to the learning objectives. Although
this option looks quite intuitive and natural, since it resembles hand-made high-
lighting, it has three potential drawbacks in relation to the one finally chosen:
(1) from a technical point-of-view, it is much more difficult to implement; (2)
from a practical point-of-view, it is a bit harder for the learner to execute too;
and (3) from a pedagogical standpoint, there is no guarantee that such a way of
text selection will provide the learner with any cognitive gain. The alternative
adopted does not guarantee any learning gain either, but at the very least it is
both easier to implement and use.

The text pane is also used by MapTutor’s teaching procedures to provide feed-
back to the learner. For example, when the program’s feedback involves inferences

Chapter 5 – MapTutor: Implementation and Trace

112

of a given relationship in the text, it will show (by highlighting it) where in the
text the information can be found (see Section 4.9.1). Figure 5–11 shows an-
other example of text reference. There, MapTutor is asking the learner for con-
firmation about a suspicion raised by the diagnostic process, and it uses the text
to create a context for the question.

5.3.2  The Links Pane

In the links pane, the learner can choose link names for use with the links she
draws in the map pane. She is expected to choose a link by clicking on the respec-
tive button containing the link name. When a link name is selected it becomes
the current link name and will stay so until a new name is selected. Each link
drawn in the map pane gets its name from the current link name. The button
corresponding to the current link name remains highlighted, so that the learner
will know which link name is the current one.

The links pane has been designed to fit any number of links an instructional de-
signer wishes to introduce into the system. Despite this, it is not expected (nor
recommended) to have a large number of links (say, more than a dozen) input
into the system, because typically, a canonical link system does not have such a
large number of links (see Section 2.4).

5.3.3  The Links Definitions Pane

The only function of the links definitions pane is to provide the definitions of the
links laid below (see Figure 5–1). The definition of a given canonical link appears
automatically in this pane whenever the cursor is over the respective link. If the
cursor is moved elsewhere, this pane will present the definition of the current
link name (see above), if one has already been selected, or simply the heading
Definitions of Links if there is none selected.

5.3.4  The Map Pane

The learner is expected to draw her graphical map in the map pane. Thus, it is in
this pane where most interesting actions really take place. Each concept in this
pane is represented by a rectangle containing the concept’s name. A link between
two concepts is represented by a line with an arrow at its end point — indicating
the direction of the link, and the link’s name situated about the middle of the
line. MapTutor uses a seemingly natural notation for representing the problem
states (i.e., map configurations) on the screen, but the learner is expected to fol-
low some conventions and constraints. For example, the learner is not allowed
to draw concepts by herself, but once a concept has been drawn, she can move

� 5.3  MapTutor’s Interface

113

it wherever she wants to. Also, links drawn in a map only make sense when they
connect two concepts. This means that links cannot ever exist without having
a concept at each of its extremities. Moreover, when the learner moves a linked
concept, all links attached to it also move along with the concept. These con-
straints simplify the programming task because they reduce the probability of
spurious constructions, such as ambiguous links, and thus make it a bit easier to
both interpret and keep track of objects drawn in the map.

MapTutor allows the learner carry out the following drawing tasks in the map
pane:

•	 Drawing a link — that is, drawing a line starting at a point inside or close[4]
a given concept and ending at another one in the map pane. MapTutor
requires that each link has both an origin and a terminal concept at the
time it is drawn. Whenever a link is drawn it is selected so that an im-
mediate subsequent operation (e.g., renaming) can be performed over it.

•	 Dragging a concept — that is, moving a box containing a word-concept
from a position to another in the map pane. This corresponds to two op-
erations in paper-and-pencil mapping: (1) deleting the concept, and (2)
then drawing it again in another place. If the concept being dragged has
links originating or terminating at it, the operation will also make these
links be moved together with the concept. MapTutor does not allow
connected concepts to be dragged alone, because doing so would lead
to map configurations containing dangling links and make bookkeeping
much more difficult. This design decision also anticipated that this would
not be a natural way of moving a concept. Thus, if the learner desires to
move the concept without its connecting links, she will have to delete the
connecting links before the operation.

•	 Renaming a drawn link. MapTutor allows the learner to rename a link
she has drawn in her map by simply selecting the desired link, picking
a new name and then clicking on the mapping tool (see Section 5.3.5)
corresponding to renaming. In a paper-and-pencil map, this operation
would correspond to (1) deleting the link’s old name, and (2) then writ-
ing down a new name. The learner may, obviously, proceed in a similar

[4]  A point is considered close to a concept if it is inside a threshold rectangle region around the
concept’s rectangle. The degree of closeness is given by constant proximity_threshold. The bigger
this threshold the greater the probability of the point is close to a concept, but the greater the
chances of a link being considered ambiguous too. Thus, this constant must be set experimen-
tally so as to reduce the chances of ambiguity and without yet requiring that a link’s extremity
be necessarily inside a concept to be considered as attached to the concept.

Chapter 5 – MapTutor: Implementation and Trace

114

way (i.e., deleting the undesired link and then drawing a new one), but
the rename operation is intended to be a short-cut and indeed it seems
to be much handier.

•	 Inverting a drawn link. This operation is somewhat similar to the previ-
ous one: to invert a link in the map pane the learner must (1) select the
link, and then (2) click on the mapping tool corresponding to inversion.
To perform this operation in a paper-and-pencil map, the learner would,
for example, delete the link’s arrow at one extremity and draw a new arrow
at the other end in the opposite direction. Like renaming, this operation
is intended to be a short-cut, that is, there are other ways of achieving
the same result.

MapTutor allows any of the tasks above to be reversed (undone/redone) as many
times as wished. Thus, there are altogether eight tasks available (the four ones
above plus their reverses), which from the programmer’s point-of-view, are rather
different (however similar they may appear from a user perspective). Moreover,
there are two other map tasks which have already been referred to above: (1) se-
lecting a concept[5] and (2) selecting a link. In fact, these are intermediate tasks
which do not have a direct influence over the map being constructed. These op-
erations prepare the selected objects for the execution of one of the operations
described above. Selection of a link in the map pane is carried out by clicking
on the region around the link, whereas selecting a concept is done in the text as
described above[6]. Only one object (concept/link) can be in a selected state in
the map pane at any time.
MapTutor provides three other operations which can affect the learner’s map.
These operations, which are irreversible, are:

•	 Tidy It Up. This operation is provided due to a technical implementation
problem: when a link which had been intersecting other links is deleted
it will sometimes eat part of the intersecting ones. To correct this, oper-
ation Tidy It Up simply redraws the eaten pieces (see Implementation
Note 1 in Section 5.10). This command is not reversible, but it does no
harm anyway.

[5]  Selecting a concept in the map pane is conceptually different from selecting a concept in
the text pane. Incidentally, by virtue of design, selecting a concept in the map pane is a result
of selecting the corresponding one in the text.
[6]  Using the interface semantics described thus far, the program cannot allow selection of
concepts by clicks on the concept itself in the map pane. By doing so, it would not be able to
decide whether the user’s intention was selecting the concept or starting drawing a link. The
meaning of a click inside a concept would therefore be ambiguous.

� 5.3  MapTutor’s Interface

115

•	 Clear All Links. This operation clears all links but leaves the concepts which
have already been selected in the text. This operation is not intended to
be used by novices, and it is not even mentioned in the tutorial program.

•	 Clear All. This command clears all (concepts and links in) the map. It is
useful when the learner wants start again from scratch a new map instead
of, for example, fixing the current one. As the previous one, this operation
is intended to be used by advanced users only.

Before carrying out the last two operations, MapTutor always reminds the learn-
er about their meanings and that they are not reversible. These operations could
easily be made reversible too. But since they are neither expected to be used fre-
quently nor are carried out without previous warnings about their effects, they
were made irreversible.

5.3.5  The Tools Pane

The Tools Pane is a pane containing a grid with icons representing mapping tools
— i.e., tools with which the learner can carry out most of those drawing tasks
in the map pane described in Section 5.3.4, plus the Assistant Tool by means of
which she can call the Help program (see Section 5.5). Each tool has an asso-
ciated icon to remind the learner of the meaning of the given tool, but just in
case, the tools pane also has an associated definitions pane which presents the
(written) definition of each tool when the cursor is over the respective icon (see
below). The tools provided in the tools pane are:

•	 Tool Delete — this tool is represented by an eraser icon in the tools grid
and its action is to delete a selected link.

•	 Tool Invert — this is a command in the tools grid which can be used to
invert a selected link. This tool is represented by two inverted arrows in
the tools grid.

•	 Tool Rename — this is a command in the tools grid which can be used to
rename a selected link. This tool is represented by two L’s in the tools grid.

•	 Tool Revert — this is a command in the tools grid which can be used to
revert (undo/redo) the learner’s last action (of course, provided it is revers-
ible). This tool is represented by a U-turn icon in the tools grid.

•	 Tool Tidy It Up — is a command in the tools grid which can be used to
attempt to clean the learner’s map. This tool is represented by the magic
wand icon in the tools grid.

Chapter 5 – MapTutor: Implementation and Trace

116

•	 Tool Assistant — is a command in the tools grid which invokes MapTutor’s
help program (see Section 5.5). This tools is represented by the question
mark icon in the tools grid.

These tools invoke the appropriate action whenever they are clicked on, but the
action itself is only executed when it is possible. For example, if the learner clicks
on the Rename Tool, without having chosen a new name to replace the desired
link’s name, there will be no effect at all.

5.3.6  The Tools Definitions Pane

The Tools Definitions Pane is a small pane situated below the tools grid. It sim-
ply presents short definitions of the tools laid above it. A definition is presented
whenever the cursor is over an icon representing a tool. This pane is intended to
prevent those icons from being misinterpreted.

5.3.7  The Tutor Pane

The tutor window is a small window with an icon inside the tutor pane[7]. This
pane is initially situated near the top left of the main window. It can be moved
around the screen at the learner’s best convenience but it can never be closed.
The intended metaphorical meaning of this pane is to provide both a place where
the learner can read (automatic or upon request) feedback messages and visual
feedback as to whether the program has something to tell the learner (see Section
5.7). Thus, the only function of this pane is to deliver feedback messages and
visual clues for the learner.

5.3.8  Pull-Down Menus

MapTutor has pull-down menus which complement the application’s environ-
ment, but they are not expected to be used very frequently. The menu options
offered by the program are:

•	 File Menu — this menu contains the standard file manipulation items
(e.g., New, Open, Save, etc.).

•	 Edit Menu — this menu contains (redundantly) all those mapping tools
describe above plus commands Clear All and Clear All Links.

•	 Experimental Menu — this menu (see Figure 5–3) should not be used
by a learner. It is intended to be used by the experimenter in the exper-
imental stage of the program. This menu contains the following items:

[7]  The distinction between window and pane is not important here. Thus, this whole inter-
face element will henceforth be referred to as tutor pane.

� 5.3  MapTutor’s Interface

117

◊	 Create In-Session Report — used to create a report about the objects
drawn in the map pane. It is only useful for debugging the program
and adjusting drawing parameters.

◊	 Show Knowledge Base — when chosen, creates a report about the cur-
rent knowledge base of the program. It was used to create Appendices
A to C.

◊	 Shut Up Tutor — used to make the tutor silent when the program-
mer is testing other parts of the program than those responsible for
delivering feedback. If used by a learner, the program will behave like
a structured interface only (in the sense of Section 5.2).

◊	 Ask Eval Questions — an attempt to ask evaluation questions about
the correctness of diagnosis and usefulness of feedback while the sub-
jects of the experiments are engaged in drawing their maps, but this
option turned out to be very annoying for the learner.

◊	 Enable Tests — used by the programmer to test any procedure in the
debugging stage.

◊	 Diagnostic Strategies — this item contains a sub-menu which allows
for changing the current diagnostic strategy in real-time (i.e., during
a tutorial session). It has also served for testing the behaviour of the
program when using the various strategies. The sub-menu items corre-
spond to those ordering relations defined in Chapter 4. As seen in that
chapter, there are altogether six such relations and they are identified in
this sub-menu as a sequence of characters which resembles the respec-
tive relation (see Figure 5–3). For example, the option ml < mc < mr
stands for the ordering relation,

MisunderstandsLinkMeaning  MisunderstandsConcepts

  MisunderstandsRelationship

In addition to the ordering relations defined in Chapter 4, there is an-
other option — called Ask Learner — by using which the program will
always ask the learner in order to decide about an ambiguous preliminary
diagnosis (i.e., when more than one basic diagnostic procedure succeeds
— see Section 4.5, in Chapter 4 for more details). The diagnostic strat-
egy currently in use corresponds to the option which is check-marked in
this sub-menu.

Chapter 5 – MapTutor: Implementation and Trace

118

Experimental

Create In-Session Report

Show Knowledge Base

Shut up Tutor

Ask Eval Questions

Enable Tests

Diagnostic Strategies... ML < MC < MR  1

ML < MR < MC  2

MC < ML < MR  3

MC < MR < ML  4

MR < MC < ML  5

MR < ML < MC  6

Ask Learner  7



Figure 5–3:  Menu Used in Experimental Studies

5.4  Interpreting and Keeping Track of the Learner’s
Actions��5.4

Interpreting and keeping track of objects drawn in the map pane is one of the
hardest parts of the implementation of MapTutor. These functions refer to iden-
tifying what the learner has actually done and how her last action affected her
map. Moreover precisely, this suite of procedures is responsible for identifying
object locations (e.g., where in the map pane a given concept lies) and how they
fit together (e.g., by determining which concepts a given link connects). Although
bookkeeping is closely related to diagnostic evaluation, these are rather distinct
functions. In fact, the bookkeeping functions described here precede diagnosis,
and the diagnostic procedures described in Chapter 4 are called only when the
learner’s action results in a valid new link[8]. Although interpreting learners’ in-
puts is much easier than (say) interpreting natural language inputs, it is not as
easy as it may appear at first sight.

Defining what should constitute legal moves is the first step of designing the
interpretation module. A legal link for MapTutor is one which connects two
concepts in an unambiguous way without duplication. By contrast, an anoma-
lous link is dangling — i.e., it does not connect two concepts; duplicated — i.e.,

[8]  In this sense, a link which has been renamed or inverted is considered as a new one, as if
it had been deleted and then drawn again.

� 5.4  Interpreting and Keeping Track of the Learner’s Actions

119

there is another link connecting the same concepts; or ambiguous — i.e., the
program cannot tell which concept the link is pointing to/from[9].

As MapTutor does not have a general perception of the objects presented on the
screen (i.e., it does not interpret the map as a whole image), it has to keep track
of each object separately. Anomalous links could lead to wrong diagnosis, and
thus MapTutor only analyses legal ones. Therefore, spurious constructs must be
avoided as early as possible. For example, ambiguity is introduced in the map be-
ing constructed when, as a result of an operation in the map, the program cannot
tell which concept a given link nearby is pointing to/from. Figure 5–4 shows
such an example of link ambiguity. In this figure, the program cannot decide
whether link is a points to concept habitat or to concept place. Thus, when the
learner draws an ambiguous link (from the program’s perspective), MapTutor
will ask her to clarify this link before proceeding. In the example presented in
Figure 5–4, the program would present a dialogue box asking the learner to
choose among the options: habitat, place or abort the link (see Figure 5–5). If
the learner does not clarify the ambiguous link the program will abort it anyway.

MICROHABITAT

HABITAT PLACE

IS A

Figure 5–4:  Example of an Ambiguous Construct

The drawback of the dialogue window in Figure 5–5 seems to be that it hides
the construction under scrutiny. MapTutor alleviates this problem by warning
the learner earlier that there is an ambiguous link and that it will soon afterwards
ask for clarification.

According to a generally accepted engineering methodology, when designing,
we should always bear in mind the worst possible situation. In the current con-
text, this means that we should not design for a well-behaved learner. How to
avoid anomalous links then? Otherwise, if this is not possible or desirable, how
to reduce or manage the anomaly space? The easiest answer seems to be, do not
allow spurious links to be drawn altogether. Taking this too rigorously, however,
may frustrate the learner (e.g., ‘Why have so many of my link been disallowed by
the program?’). Thus, a compromise should be reached that the program would
categorically reject anomalous links only when they jeopardise the diagnostic

[9]  Note that these features are not mutually exclusive. For instance, a link may be duplicated
and ambiguous.

Chapter 5 – MapTutor: Implementation and Trace

120

and teaching processes. In such a case, the program must either tell the learner
why her link has been rejected, or give her a chance to repair the problem before
doing so. But what are the anomalous cases which really jeopardise the whole
process? The first obvious candidate is ambiguity.

File Edit Experimental

S3's Map

HAS PROPERTY

LEADS TO

PART OF

DIFFERENT

EQUIVALENT

IS A

An organism's habitat is the place where it
leaves, its address. Our woodland is the
habitat for a whole host of organism. Many
organisms will only occupy a small part of the
total habitat, for example, the snail in our
woodland. This small part of the total habitat is
called microhabitat.

Each habitat will have certain distinct features
which affect the organisms living in it. On the
other hand, there are psycho-chemical or
abiotic factors: climate, soil, type of water
(marine, fresh, running, still) and so on. On
the other hand there are biotic factors, which
are determined by the organisms which share
the habitat. For example, organisms which eat
each other compete with each other for food
or provide shelter.

Biotic and abiotic factors are not independent
of each other. For example, the trees in a
woodland affect the humidity, temperature
and amount of sunlight there. So, trees, a
biotic factor, influence the psycho-chemical

This link is not used by MapTutor.

L1 → L2 ?

The termination of the link you just
drawn is ambiguous to me. Which
concept do want me to attach this
links’s arrow?

OK

Place

Habitat

ABORT THIS LINK

microhabitat

Figure 5–5:  Asking for Clarification of an Ambiguous Link

Coming back to Figure 5–4, let us suppose for the sake of argument that the pro-
gram allowed that construction. Let us further imagine that the learner wanted
to remove the ambiguity by moving one of the involved concepts farther apart.
The program would have to decide whether the ambiguous link would go along
with the to-be-dragged concept or stay with the retained one. This decision would
obviously be rather arbitrary because the program has no clue whatsoever about
the learner’s intention. But this is not so bad: if the program had attached the
ambiguous link to the undesired concept, the learner would simply undo her
dragging, and then drag the other concept instead. In any case, we would end up
with a non-ambiguous link which then would have to be evaluated by the diag-
nostic processes, feedback would be provided and so on. Now, to make things
much worse, imagine that in Figure 5–4 we had two ambiguous links (say, an-
other link starting in a point between concepts habitat and place) instead of
only one[10]. At the end of the process just described, the program would have to
[10]  This may sound a bit weird and unlikely, but remember the engineering design principle
(or the equivalent motto: better safe than sorry).

� 5.4  Interpreting and Keeping Track of the Learner’s Actions

121

provide feedback referring to two ex-ambiguous links in a row, and this could
cause even more confusion for the learner[11]. To sum up, the best solution to this
hypothetical problem is to prevent it happening in the first place. In the example
just described, the best thing to do is to avoid the link being ambiguous by asking
the learner to which concept she intends to attach her link as soon as she intro-
duces the ambiguity, or to disallow the link in the case where she cannot decide.

Another construction considered spurious by MapTutor is that involving dupli-
cation of links. A link is duplication when there’s another one that links the very
same concepts as the first link, and these links are not allowed to coexist together
(see Section 3.7.2). This kind of anomaly is not as serious as ambiguity, but even
so they should also be avoided. MapTutor does not disallow duplicated links,
but it does not diagnose or provide feedback on them.

5.4.1  Map Tasks Records

In order to keep track of the learner’s actions, MapTutor maintains a number of
data structures referred to as map tasks records. These records support a variety of
external (e.g., reversible tasks) and internal (e.g., self-consistency testing) facilities.
Table 5–3 sums up the main data structures of MapTutor’s map tasks records.
The present section has been included with the sole purpose of give some idea
of the internal workings of MapTutor, since full details would be too lengthy
and beyond the scope of this book. Thus, only the most important structures
are included in Table 5–3. Some of the structures presented in this table will be
briefly described next.

Here, a task (or more precisely, a drawing task) is any of those actions which can
be performed in the map pane (see Section 5.3.4). A drawn concept is repre-
sented by the drawn concept record presented in Table 5–4, whereas a drawn
link is represented by the drawn link record presented in Table 5–5. A task, as
defined here, is represented into MapTutor according to the task reference re-
cord shown in Table 5–6. Many of the data presented in Table 5–3 to Table
5–6 are in fact redundant and could be calculated by the program as needed,
but this redundancy of data accelerate the algorithms which make use of them.

Data Member Definition

Current drawn concept the concept (if any) used in the current
drawing task.

[11]  Even worse from the programmer’s point-of-view: suppose that afterwards, the learner
decided to revert (undo) her action. Then, the program would also have to revert its whole up-
dating process. The troubles caused by ambiguity seem to be endless.

Chapter 5 – MapTutor: Implementation and Trace

122

Data Member Definition

Saved drawn concept
the concept (if any) used in the last draw-
ing task. (This is necessary to support re-
versible tasks.)

Current drawn link the link (if any) used in the current draw-
ing task.

Saved drawn link
the link (if any) used in the last drawing
task. (This is necessary to support revers-
ible tasks.)

List of drawn concepts list of concepts drawn in the map pane.
List of drawn links list of links drawn in the map pane.
List of tasks list of tasks carried out in the map pane.

Table 5–3:  MapTutor’s Records

Field Definition
Name the concept’s name.

Concept rectangle the position of the rectangle around the
concept.

Name position the position of the concept’s name.

Linked flag indicating whether there is any link
originating or arriving at the concept.

Table 5–4:  Drawn Concept Records

5.4.2  Pre-Evaluating the Learner’s Move

The first stage of evaluation carried out by MapTutor is to preliminarily inter-
pret the learner’s last move. Moves include not only the draw tasks described
above, but also actions performed by the learner over other interface elements.

When the last move was a click in the text pane, MapTutor proceeds as follows:

•	 if a concept has been hit for its first time, it draws the concept in the map
pane.

•	 if a concept has been hit but it has already been drawn in the map pane,
it just makes it the currently selected concept in the map pane.

•	 if there’s no concept of interest where the learner clicked on, it tells her
there was no important concept where she clicked.

� 5.4  Interpreting and Keeping Track of the Learner’s Actions

123

Field Definition
Name the link’s abbreviate name.
Initial point point where the line originate at.
End point line’s termination point.
Name rectangle the rectangle enclosing the link’s name.
Arrow rectangle the rectangle enclosing the link’s end arrow.

Links from index into list of concept of the concept at which
the link originates.

Links to index into list of concept of the concept at which
the link terminates.

Deleted flag indicating whether this link has been deleted.
Duplication index of a duplication, if this link is duplicated.

Assessment the link’s assessment value (ass — see Section 3.5)
determined by the diagnostic procedures.

Table 5–5:  Drawn Link Records

Field Definition
Task ID task reference number.

Object index the index of the main object (concept/
link) used in the task.

Link Duplication removed flag indicating whether the learner has
removed an earlier duplication of links.

Link Duplication introduced flag indicating whether the learner has
drawn a duplicated link.

Evaluation

identification number of the task evalua-
tion carried out by the diagnosing meth-
ods. A task is evaluated only when it re-
sults in a new connection between two
concepts (see Section 4.3).

Links to index into list of concept of the concept
at which the link terminates.

Table 5–6:  Task Reference Records

If the last move was a click in the links pane, MapTutor informs the map pane
that all subsequent links drawn in that pane will have this new chosen name. If
the last move was a drawing task in the map pane, MapTutor interprets the task
and fills in some fields of those records[12] described in the last section. Then, it
[12]  Some records are only fully filled after diagnosis.

Chapter 5 – MapTutor: Implementation and Trace

124

calls a procedure responsible for evaluating the mapping task. Evaluation of a
mapping task is the last stage before the task is actually diagnosed and feedback
is provided as described in Chapter 4. This stage of evaluation is depicted next.

5.4.3  Evaluating a Mapping Task

The evaluation of mapping task stage is responsible for deciding whether or
not the learner’s last task should be diagnosed and the tutoring parameters de-
scribed in Chapter 4 updated. A task is diagnosed and the appropriate feedback
is delivered only when it results in a new legal link[13], according to the criteria
established in the previous section. Table 5–7 summarises the actions taken by
MapTutor at this stage, according to the last mapping task.

If the last task was... The action taken is...
Concept dragging nothing at all needs to be done, because moving

a concept does not result in new links. Objects
which changed their position as a result of the
dragging have already been updated in the preced-
ing stage.

Link drawing if the link is a legal one, it will be diagnosed and
feedback will be provided.

Link clearing no diagnostic or feedback is carried out on the
link itself, but a if a duplication has been removed
as a result and the remaining ex-duplicated link
is a legal, not previously evaluated one, the lat-
ter will be diagnosed as if it has just been drawn.

Link renaming/inversion if the renamed/inverted link is a legal one, it will
be diagnosed and feedback will be provided, as
if it had been deleted and then redrawn, with a
new name/direction.

Table 5–7:  Evaluation a Mapping Task

No diagnostic or feedback procedure is executed when the learner has changed
her mind and has reversed (i.e., undone/redone) her last task. However, if the
tutoring parameters, discussed in Chapter 4, were updated when the original
task was carried out (i.e., done), MapTutor must also revert this updating.

[13]  As a matter of fact, the only anomalous link which could arrive at this stage is link dupli-
cation. A would-be dangling link will have already been disallowed, and a would-be ambiguous
link will have been either clarified by the learner or disallowed too.

� 5.5  The Help and Tutorial Programs

125

5.5  The Help and Tutorial Programs��5.5

MapTutor has two separate but non-independent auxiliary programs which
contribute to the main program’s overall environment: (1) the tutorial program,
and (2) the help program. These programs have been developed by using a com-
mercial authoring tool Guide Maker, by Apple Computer, Inc. Both the tutorial
and the help programs associated with MapTutor serve basically the same pur-
poses: (1) to teach the learner how to use the program; and (2) to provide her
with some more useful related information. The tutorial program assumes that
the learner is a newcomer to the main program and does not possess the skills
necessary to use it properly. Thus, the tutorial presumes that the learner who uses
it needs assistance as well as a guided path (i.e., a well-defined instructional se-
quence) throughout the tutorial itself. Moreover, although the tutorial does not
impose any instructional sequence, it does suggest that the learner should follow
the one prescribed to her. Figure 5–6 shows the panel of the tutorial program
which contains the main sequence of study suggested to the learner. MapTutor
launches its tutorial program whenever a new session[14] starts (see Figure 5–1),
but if the learner does not wish to use this program, she can dismiss it by simply
closing its window. To sum up, the tutorial program associated with MapTutor
implements both the Pre-Teaching stage of the training approach described in
Chapter 3, and teaches a novice learner how to use the main program.

On the other hand, the help program is much more flexible and has a broad-
er content than the tutorial. The help program assumes that the learner already
knows how the program works and it is called for only when she faces some dif-
ficulty or cannot remember something she had already learnt during the tutorial.
Furthermore, in contrast to the tutorial program, the help program allows for
free browsing, and various styles of searching are supported as well. For exam-
ple, the learner may look for a topic (e.g., how to rename a link) by browsing
the index or the list of topics, or by asking the program to do the search on her
behalf (e.g., by providing rename as a search key).

[14]  More precisely, the tutorial is launched when the learner starts a new map in a new ses-
sion, because if the learner invokes a new session to continue the construction of an old map,
MapTutor will assume that she already has the necessary basic skills in working with the program,
and thus it will not launch the tutorial program. She may, of course, always launch this program
by herself by pulling down the help menu and choosing the tutorial option.

Chapter 5 – MapTutor: Implementation and Trace

126

Getting Stated1

2

MapTutor’s Diagnosis3

4

Learning How to Map

MapTutor’s Feedback

Choose your option by clicking one of the folowing buttons
(the one with an arrow is recommended):

1

Figure 5–6:  Tutorial Program’s Suggested Sequence

Figure 5–7 shows the help program’s main browsing window. As can be seen in
that figure, the instructional material is chunked into topic areas (see left column
in Figure 5–7); the topics themselves (right column in Figure 5–7) are divided
into headings which answer procedural (e.g., How do I and Why can’t I headings)
or descriptive (e.g., Definitions heading) queries.

As mentioned above, the help and tutorial programs are not independent from
the main program, and that dependency means that (1) MapTutor will behave
in a slightly different way when one of these programs is being used than oth-
erwise, and (2) it will provide context-dependent information to these auxiliary
programs to act in a more intelligent manner (see Implementation Note 2 in
Section 5.10). For example, if the learner asks the help program to teach her
how to rename a link, its behaviour will depend upon whether she already has a
selected link in her map or not, she has already selected a new name to replace
the old one or not, and so on. Figure 5–8 illustrates this example. In that situa-
tion, the learner had already a selected link in her map when she asked the help
program to teach her how to rename the link, but she has not selected a new
name yet. The help program is informed by MapTutor about the current situ-
ation and starts its instructional sequence by telling the learner that she should
select a new link name in the first place.

� 5.5  The Help and Tutorial Programs

127

Selecting concepts
Drawing a map
MapTutor General
Using the Gride Tools
Opening & Saving Documents
Printing
Setting Preferences

1. Click a topic area:

know the meaning of a given tool?
use a given tool?

use a given tool?

Tool Delete
Tool Invert
Tool Rename
Tool Revert
Tool Tidy It Up
Tool Assistant

2. Click a phrase, then click OK:

OK

MapTutor
Guide

Figure 5–7:  Help Program’s main Browsing Window

The help program will also know whether the learner has carried out correctly
its instructions (e.g., the program instructed her to click on the rename tool,
but she clicked on the invert tool instead) and adapt its feedback sequence ac-
cordingly. Continuing with the last example above, in Figure 5–9, the learner
has not followed the instruction (Figure 5–8) given by the help program. It has
then stopped the normal sequence to warn her about this. The help and tutorial
programs also provide the learner with visual information by means of coach
marks[15], which are intended to complement the instructions or definitions pro-
vided, and facilitate learning (at the very least, coach marks embellish the feed-
back and may even motivate the learner to proceed just to see where the next
coach mark is going to be drawn). The coach mark positions are also provided
by the main program in the cases where they refer to mobile (e.g., windows) or
changing objects (e.g., concepts and links). Figure 5–10 shows the help program
presenting a coach mark around a link the learner has just renamed. The scenar-
io depicted in Figure 5–10 would be the last in the rename example developed
above, and the final panel along with the coach mark are intended to call her
attention to the effect of her last operation.

[15]  A coach mark is an on-screen graphic that circles or points to an item on the screen’ (Apple
Computer, 1995, p. 2–79) so as to call the user’s attention to the item.

Chapter 5 – MapTutor: Implementation and Trace

128

File Edit Experimental

Patricia's Map

HAS PROPERTY

LEADS TO

PART OF

DIFFERENT

EQUIVALENT

IS A

An organism's habitat is the place where it
leaves, its address. Our woodland is the
habitat for a whole host of organism. Many
organisms will only occupy a small part of the
total habitat, for example, the snail in our
woodland. This small part of the total habitat is
called microhabitat.

Each habitat will have certain distinct features
which affect the organisms living in it. On the
other hand, there are psycho-chemical or
abiotic factors: climate, soil, type of water
(marine, fresh, running, still) and so on. On
the other hand there are biotic factors, which
are determined by the organisms which share
the habitat. For example, organisms which eat
each other compete with each other for food
or provide shelter.

Biotic and abiotic factors are not independent
of each other. For example, the trees in a
woodland affect the humidity, temperature
and amount of sunlight there. So, trees, a
biotic factor, influence the psycho-chemical

A concept is a type of (IS A) another concept when
the first is an example of, a kind of, in the category
of, or is a member of the second).

L1 → L2 ?

woodland

microhabitat

is a

Choose a new name for the link you want to
rename by clicking on a button in the links
pane.

1

Do this step, then click the right arrow.

microhabitat

Figure 5–8:  Helping the Learner to Rename a Link I : The learner has just
asked the help program to teach her how to rename a link.

File Edit Experimental

Patricia's Map

HAS PROPERTY

LEADS TO

PART OF

DIFFERENT

EQUIVALENT

IS A

An organism's habitat is the place where it
leaves, its address. Our woodland is the
habitat for a whole host of organism. Many
organisms will only occupy a small part of the
total habitat, for example, the snail in our
woodland. This small part of the total habitat is
called microhabitat.

Each habitat will have certain distinct features
which affect the organisms living in it. On the
other hand, there are psycho-chemical or
abiotic factors: climate, soil, type of water
(marine, fresh, running, still) and so on. On
the other hand there are biotic factors, which
are determined by the organisms which share
the habitat. For example, organisms which eat
each other compete with each other for food
or provide shelter.

Biotic and abiotic factors are not independent
of each other. For example, the trees in a
woodland affect the humidity, temperature
and amount of sunlight there. So, trees, a
biotic factor, influence the psycho-chemical

A concept is a type of (IS A) another concept when
the first is an example of, a kind of, in the category
of, or is a member of the second.

L1 → L2 ?

woodland

microhabitat

is a

You haven’t chosen a new name for renaming
the link. Try again and then click OK.

1

microhabitat

OK

Figure 5–9:  Helping the Learner to Rename a Link II: The learner has not done
what the help program has told her to do

� 5.6  Using MapTutor

129

Another form of help supported by MapTutor is by means of Apple’s balloon
help. To use this feature, the learner should choose Show Balloons in the help
menu. When the balloons are on, the learner can see the meaning of each inter-
face element of MapTutor by simply moving the cursor around these elements.

File Edit Experimental

Patricia's Map

HAS PROPERTY

LEADS TO

PART OF

DIFFERENT

EQUIVALENT

IS A

An organism's habitat is the place where it
leaves, its address. Our woodland is the
habitat for a whole host of organism. Many
organisms will only occupy a small part of the
total habitat, for example, the snail in our
woodland. This small part of the total habitat is
called microhabitat.

Each habitat will have certain distinct features
which affect the organisms living in it. On the
other hand, there are psycho-chemical or
abiotic factors: climate, soil, type of water
(marine, fresh, running, still) and so on. On
the other hand there are biotic factors, which
are determined by the organisms which share
the habitat. For example, organisms which eat
each other compete with each other for food
or provide shelter.

Biotic and abiotic factors are not independent
of each other. For example, the trees in a
woodland affect the humidity, temperature
and amount of sunlight there. So, trees, a
biotic factor, influence the psycho-chemical

A concept has property of another concept when
the second is a quality, attribute, or distinct feature
or characteristic attribute of the first.

L1 → L2 ?

woodland

microhabitat

part

You have renamed the desired link in your map.

That’s all, you’re done.

1

microhabitat

Related Topics

Figure 5–10:  Helping the Learner to Rename a Link III: The learner has just
completed the renaming operation

5.6  Using MapTutor��5.6

The user of MapTutor is instructed by the tutorial program described above to
follow the sequence below when using the program:

1.	 Read all the text thoroughly.

2.	 Select concepts which are relevant to the learning objectives[16].

3.	 Connect the concepts selected in Step 2 in the map pane until you prove
to know all the major concepts (according to the criterion defined in
Section 3.5).

[16]  Somehow, the learner must know what the learning objectives are. One can read a text
with any objective in mind. Therefore, obviously, the learner’s objective must not conflict with
the program’s.

Chapter 5 – MapTutor: Implementation and Trace

130

There might be many variations of the sequence above, and MapTutor is not
rigorous about this. For example, Step 2 can be carried out in tandem with the
first-time reading, or alternatively, can be executed in a second pass throughout
the text. The latter probably has some additional learning gain because the learn-
er reads the text twice (see, e.g., Just & Carpenter, 1987).

After this brief, general introduction, the tutorial program teaches specific details
about how to use MapTutor’s facilities in order to construct a graphical map.
These topics can be summed up as follows[17]:

•	 To draw a concept: choose a concept in the text pane by clicking on its
name until it is highlighted, and let MapTutor do the rest on your behalf.
Whenever a new concept is drawn, it appears with an animated rectangle
(called marquee) around it indicating that it is selected. A selected con-
cept (i.e., a concept with a marquee) can be moved around the map pane.

•	 To draw a link: choose a link name, represented by a button with the
link’s name inside, in the links pane by clicking on its button until it be-
comes highlighted. Then click on close to a concept in the map pane and
drag a line to a point close to another concept. You will know whether the
pointer is sufficiently close to a concept when it takes the shape of a pencil.

•	 To drag a concept (i.e., to move it to another position in the map pane):
select the concept by clicking on the respective concept in the text until
it gets selected (with a marquee). Then click the mouse again and keep it
pressed while you move the concept around. When the concept is at the
desired position, release the mouse.

•	 To delete (clear) a link: select the link by clicking on or around it in
your map until you see a marquee around the link’s name. Then press the
delete/backspace key. Alternatively, you can also click on the Delete Tool
in the tools pane. The Delete Tool takes the shape of an eraser.

•	 To rename a link: select the link by clicking on or around it in your map
until you see a marquee around the link’s name. Then choose a new name
in the links pane by clicking on its button name until it becomes high-
lighted. Then click on the Rename Tool in the tools pane. The Rename
Tool takes the shape of two L’s.

•	 To invert a link: select the link by clicking on or around it in your map
until you see a marquee around the link’s name. Then click on the Invert

[17]  These topics are distributed over a number of tutorial panels.

� 5.7  Tutorial Interventions

131

Tool in the tools pane. The Invert Tool takes the shape of two opposite
arrows.

•	 To revert (undo/redo) a drawing action: click on the Revert Tool in the
tools pane. The Revert Tool takes the shape of a U-turn.

•	 To clean up your map: click on the Tidy It Up Tool in the tools pane. The
Tidy It Up Tool takes the shape of a magic wand. However, tidying your
map up is not always possible, so try to keep it neat by yourself.

The mapping procedures depicted above constitute part of the Learning How
to Map sequence which is initiated by clicking the button which has this name
inside (see Figure 5–6).

5.7  Tutorial Interventions��5.7

The tutor’s interventions are mostly in form of balloons (see Implementation
Note 3 in Section 5.10) centred around the tutor pane. After reading a com-
ment from the tutor, the learner can dismiss the balloon by simply clicking the
mouse anywhere.

MapTutor supports two types of feedback messages, namely automatic feed-
back messages — i.e., those which the program believes to be essential and thus
must be delivered automatically, and user-demanded feedback messages — i.e.,
those which the program simply signals (see Section 5.3.7) the learner they are
available, but are only delivered upon the learner’s own request. The latter type
of message avoids the program being to obtrusive when dealing with minor
problems. For example, the learner is warned before starting a new session by
the tutorial program that concepts will only be drawn in the map pane if she
hits an important concept in the text. Thus, MapTutor assumes that the learner
will remember this whenever no concept is drawn as a result of her click. Then,
it will highlight the tutor pane to signal the learner that something went wrong
with her last action; if she does not know what the problem was, she will ask
the tutor by clicking on the tutor pane; otherwise, she will simply keep going.

Note that automatic feedback messages, when the program has determined their
necessity, are only presented to the learner at idle time[18]. This period of time
usually does not represent much time in computational terms, but it prevents

[18]  In fact, idle time refers to period of time the program is not doing any serious business
(e.g., it may be animating a marquee or blinking a caret simply because it has nothing else to
do), but in practical terms, as the program’s responsiveness is very rapid, this also means the
period of time the user is inactive.

Chapter 5 – MapTutor: Implementation and Trace

132

the learner being suddenly offered a feedback message while she is doing some-
thing else.

Another form of tutorial intervention occurs when the program asks the learner
some thing as part of its diagnostic process (see Section 4.7). In these situations,
MapTutor presents the learner with a dialogue window containing options for
her to choose from. Figure 5–11 shows an example of such a dialogue window
presented by MapTutor. In this figure, the program is asking whether the learn-
er is sure to have understood the relationship between concepts organisms and
microhabitat. Note also that the piece of text the question refers to is high-
lighted in the text pane.

File Edit Experimental

Patricia's Map

HAS PROPERTY

LEADS TO

PART OF

DIFFERENT

EQUIVALENT

IS A

An organism's habitat is the place where it
leaves, its address. Our woodland is the
habitat for a whole host of organism. Many
organisms will only occupy a small part of the
total habitat, for example, the snail in our
woodland. This small part of the total habitat is
called microhabitat.

Each habitat will have certain distinct features
which affect the organisms living in it. On the
other hand, there are psycho-chemical or
abiotic factors: climate, soil, type of water
(marine, fresh, running, still) and so on. On
the other hand there are biotic factors, which
are determined by the organisms which share
the habitat. For example, organisms which eat
each other compete with each other for food
or provide shelter.

Biotic and abiotic factors are not independent
of each other. For example, the trees in a
woodland affect the humidity, temperature
and amount of sunlight there. So, trees, a
biotic factor, influence the psycho-chemical

This link is not used by MapTutor.

L1 → L2 ? Many
organisms will only occupy a small part of the
total habitat, for example, the snail in our
woodland. This small part of the total habitat is
called microhabitat.

Organism

Microhabitat

Do you think you really understand
the meaning of the relationship
between concepts Microhabitat and
Orgnanism as presented in the
selected piece of text?

I’m NOT so sure

I’m sure

OK

Address

has

Figure 5–11:  Asking for Confirmation

5.8  End-of-Session Report��5.8

At the end of a mapping session, MapTutor always creates a final report con-
sisting of the session’s log. This report is then saved as a text file separate from
the file containing the final map itself, which is saved in MapTutor’s own file
format. Table 5–8 shows an example of such report created by the program. In
this table, added text is enclosed by square brackets. Some text has been inten-
tionally deleted at the end to keep it short.

� 5.8  End-of-Session Report

133

MapTutor’s Final Report

[Preamble]
Student’s name: Patricia
This session started on 27/8/95 at 5:41:28 am.
This session ended on 27/8/95 at 5:46:12 am.
Duration of session: 4min44secs.
Overall evaluation: 0.00.
This session was aborted;

[Beliefs Section]
The student has proven to know the following concepts:
. Organisms competing for food
. Organisms eating each other
. Organisms providing shelter
. Running
. Fresh
. Climate
. Marine
. Place
. Address
The program believes the student somewhat knows how to
map the following concepts:
. Organisms competing for food (1.000)
. Biotic Factor (0.400)
. Organisms eating each other (1.000)
. Organisms providing shelter (1.000)
. Microhabitat (0.455)
. Habitat (0.273)
. Running (1.000)
. Type of water (0.375)
. Fresh (1.000)
. Climate (1.000)
. Physico Chemical Factor (0.200)
. Abiotic Factor (0.144)
. Organism (0.182)

Table 5–8:  End-of-Session Report Created by MapTutor (continues...)�

Chapter 5 – MapTutor: Implementation and Trace

134

. Marine (1.000)

. Place (1.000)

. Address (1.000)

[Mapping Task Section]
There follows the list of actions the student
performed in the map pane:
[1] Draw a link named ISA from Organisms competing
for food to Biotic Factor. MapTutor found that this
link was wrong and the cause was misunderstanding
of meaning of canonical links.
[2] Renamed a link named LEADS from Organisms
competing for food to Biotic Factor. MapTutor found
that this link was correct.

[deleted text]

Table 5–8 (Cont): E nd-of-Session Report Created by MapTutor

As can be apprehended from Table 5–8, the end-of-session report consists of
information gathered during the mapping session. This report can be divided
into three main sections:

•	 Preamble — containing general information about the session, such as
the student’s name, date, time, etc. This section also contains an item —
called Overall Evaluation — which indicates the proportion of major
concepts (learning objectives) the program believes the learner knows (ac-
cording to the criterion established in Chapter 3) in relation to the whole
number of major concepts.

•	 Beliefs Section — this section contains precisely the program’s beliefs
about the learner’s performance (see Chapter 3). It can be subdivided
into two sub-sections:
◊	 Known Concepts — consisting of those concepts MapTutor believes

the learner has mastered[19] (see Section 3.5);
◊	 Linked Concepts — this sub-section contains the list of concepts the

learner both selected in the text and linked in the map pane. The be-
lief-degree (bd — see Section 3.5) associated with each linked con-
cept is the number following the respective concept and enclosed by
parentheses.

[19]  The Knowing-Threshold (kt) was set at 0.6 at the time this report was created.

� 5.9  Entering the Knowledge

135

•	 Mapping Tasks Section — this section contains all mapping tasks the
learner performed in the map pane.

The end-of-session reports created by MapTutor serve two main purposes ac-
cording to whom makes use of them:

1.	 For the Researcher. From the researcher’s standpoint, these final reports
are useful not only to see whether the program is working properly as
specified (e.g., by comparing hand-calculated bd’s with the program’s),
but also and most importantly, to verify whether the theory is appropriate
(e.g., by analysing the various reports and trying to uncover error patterns
— see Chapter 6 and Appendix D). Thus, these reports can also be used
as a research tool.

2.	 For the Learner. The student may also learn more from her own mistakes
by studying these reports at the end of each session.

5.9  Entering the Knowledge��5.9

The knowledge base of MapTutor has been currently input using a program-
mer’s interface, instead of the authoring interface proposed in Figure 3–1. The
reason for this is that the latter would require a hefty programming effort, which
is unjustifiable for the primary goals of this research. The current interface does
not present any trouble for a programmer familiar with Macintosh development,
but it is unsuitable to a user who is not familiar with such an environment. This
interface contains a series of templates associated with each of those object pro-
totypes presented in Section 3.7. These templates were built using a resources
editor (see Implementation Note 4 in Section 5.10). Despite requiring some
specific programming knowledge in order to be directly entered into the program,
the knowledge base can easily and quickly be specified (and modified) without
requiring such specific knowledge. It is estimated that the knowledge associated
to a text and a set of canonical links like the ones describe in this book would take
about eight hours to be fully specified. Then, a programmer would take no more
than two more hours to enter it. A friendly authoring interface would save half
of this time. The design of such an authoring interface is suggested in Chapter 7.

5.10  Implementation of MapTutor��5.10

The object-oriented paradigm is a very natural choice for implementing a program
described with an architectural design like the one in Figure 3–1. Thus, C++,
the language chosen for implementing MapTutor, has proven to be a suitable

Chapter 5 – MapTutor: Implementation and Trace

136

option. Moreover, the object-oriented approach is very suitable for implementing
graphical interfaces and has helped to reduce the programming time and effort.

MapTutor has been implemented and runs on the Macintosh[20] using MacOS[21]
7.5. The implementation language has been Symantec C++ 7.0 using Think Class
Library 2.0[22]. Currently, MapTutor’s source code alone has about 20,000 lines
distributed over about 100 files[23]. Put together with the library utilised, the
source code goes beyond 200,000 lines but not all of this figure is actually part
of the final object code because the linker strips off unused procedures. Thus, it
is difficult to estimate how many lines of code MapTutor actually has. The tu-
torial and help programs were built using Guide Maker[24]. These programs work
only with MacOS 7.5 or later.

Implementation Notes:

1.	 MapTutor’s implementation of graphical objects is a mix of vector-based
graphics and bitmapped graphics. In other words, it does have mathemat-
ical (i.e., vector based) definitions of the objects, which it uses for book-
keeping and file-related operations, but it still draws the objects using
bitmapped images. The latter causes the bites when intersecting links are
deleted. You might be wondering, Why is it then those concepts are nev-
er bitten by either intersecting links or other concepts? The trick here is
simple: MapTutor drawings are made of a superposition of two bitmaps
— one for drawing concepts and the other for drawing links.

2.	 The dependence between MapTutor and its auxiliary programs is estab-
lished by means of an interapplication communication protocol. For more
information, see Inside Macintosh: Interapplication Communication,
Apple Computer (1994).

3.	 MapTutor uses Balloon Help by Apple Computer, Inc., and this tech-
nology has brought some problems since its intended use is not the one
the program puts it to. The major problem is that if the user moves the
mouse suddenly just before a balloon is presented, the operating system
will abort the balloon. This problem has been overcome by using two feed-
back queues which swap feedback messages with each other when a given

[20]  Trademark of Apple Computer, Inc.
[21]  Trademark of Apple Computer, Inc.
[22]  Thus, part of the source code of MapTutor is copyrighted by Symantec Corporation.
[23]  These figures include the knowledge base, and the help and tutorial program’s source code.
[24]  ©Apple Computer, Inc.

� 5.11  Conclusion

137

message cannot be delivered. Also, it is partially due to this problem that
feedback messages are only presented in idle time. Another solution at-
tempted to deliver feedback was the use of modal dialogue windows, but
although this is the recommended way of presenting messages to users of
other types of application programs, this is not a good solution for a highly
interactive program like MapTutor, which needs to deliver messages quite
frequently. Another solution could be to create another pane large enough
to contain the feedback messages, but this was also discarded because the
screen was already critically occupied by other interface elements.

4.	 The resources editor utilised was ResEdit, ©Apple Computer, Inc. Sadly,
the version of ResEdit used most of the time during the development of
MapTutor was buggy and several hours of work were lost. The new ver-
sion is still buggy, but at least they moved the bug elsewhere!

5.11  Conclusion��5.11

This chapter presented an overview of the practical aspects of implementation of
MapTutor. As Flagg (1990) points out, a good, friendly interface does not guar-
antee that learning will take place, but a poor interface can interfere negatively
with the learning process. From a research view point, an unfriendly interface
could also hamper the re searcher’s goals. For example, as seen in Chapter 2 by
using an interface which did not tie symbols representing concept to words-in-
the text the symbols are supposed to represent, Feifer (1989) might have intro-
duced a problem unique to his research, namely the icon interpretation problem.
He also spent most of his thesis attempting to resolve this problem, which could
have been minimised simply by presenting the text on-line and tying together
the symbols representing the concepts with the context in which those concepts
appear in the text. Therefore, the interface of a program like MapTutor should
at least permit that the research hypothesis be evaluated without the bias intro-
duced by a poor interface.

The implementation of MapTutor’s interface represented an enormous pro-
gramming effort. This interface was the most difficult part of implementation,
the most time consuming, and the largest part of the whole system. Including
interpretation and book keeping of objects, the interface of the program repre-
sented about 70% of all programming effort. On the other hand, MapTutor’s
interface has taken seriously the issue of how a real-world interaction would look
like, which many programs found in ITS research overlook.

Chapter 5 – MapTutor: Implementation and Trace

138

This chapter also illustrates the use of a commercial authoring tool — Guide
Maker — with a tutoring program. At first sight, it may appear that the tutorial
and help program are mere frame-based program (in computer-assisted instruc-
tion terms). This does not seem to be the case, however. When well integrated
with a main program which behaves intelligently, help and tutorial programs
constructed with this tool can be made cleverer too. The former would be re-
sponsible for providing the necessary intelligence to the latter.

